No Arabic abstract
We present the results from a weak gravitational lensing study of the merging cluster A520 based on the analysis of Hubble Space Telescope/Advanced Camera for Surveys (ACS) data. The excellent data quality allows us to reach a mean number density of source galaxies of ~109 per sq. arcmin, which improves both resolution and significance of the mass reconstruction compared to a previous study based on Wide Field Planetary Camera 2 (WFPC2) images. We take care in removing instrumental effects such as the trailing of charge due to radiation damage of the ACS detector and the position-dependent point spread function (PSF). This new ACS analysis confirms the previous claims that a substantial amount of dark mass is present between two luminous subclusters. We examine the distribution of cluster galaxies and observe very little light at this location. We find that the centroid of the dark peak in the current ACS analysis is offset to the southwest by ~1 arcmin with respect to the centroid from the WFPC2 analysis. Interestingly, this new centroid is in better spatial agreement with the location where the X-ray emission is strongest, and the mass-to-light ratio estimated with this centroid is much higher 813+-78 M_sun/L_Rsun than the previous value; the aperture mass based on the WFPC2 centroid provides a slightly lower, but consistent mass. Although we cannot provide a definite explanation for the presence of the dark peak, we discuss a revised scenario, wherein dark matter with a more conventional range sigma_DM/m_DM < 1 cm^2/g of self-interacting cross-section can lead to the detection of this dark substructure. If supported by detailed numerical simulations, this hypothesis opens up the possibility that the A520 system can be used to establish a lower limit of the self-interacting cross-section of dark matter.
We present a Hubble Space Telescope/Wide Field Planetary Camera 2 weak-lensing study of A520, where a previous analysis of ground-based data suggested the presence of a dark mass concentration. We map the complex mass structure in much greater detail leveraging more than a factor of three increase in the number density of source galaxies available for lensing analysis. The dark core that is coincident with the X-ray gas peak, but not with any stellar luminosity peak is now detected with more than 10 sigma significance. The ~1.5 Mpc filamentary structure elongated in the NE-SW direction is also clearly visible. Taken at face value, the comparison among the centroids of dark matter, intracluster medium, and galaxy luminosity is at odds with what has been observed in other merging clusters with a similar geometric configuration. To date, the most remarkable counter-example might be the Bullet Cluster, which shows a distinct bow-shock feature as in A520, but no significant weak-lensing mass concentration around the X-ray gas. With the most up-to-date data, we consider several possible explanations that might lead to the detection of this peculiar feature in A520. However, we conclude that none of these scenarios can be singled out yet as the definite explanation for this puzzle.
We present results from a 2-epoch HST H$alpha$ emission line survey of the Andromeda Galaxy that overlaps the footprint of the Panchromatic Hubble Andromeda Treasury (PHAT) survey. We find 552 (542) classical Be stars and 8429 (8556) normal B-type stars in epoch # 1 (epoch # 2), yielding an overall fractional Be content of 6.15% $pm$0.26% (5.96% $pm$0.25%). The fractional Be content decreased with spectral sub-type from $sim$23.6% $pm$2.0% ($sim$23.9% $pm$2.0%) for B0-type stars to $sim$3.1% $pm$0.34% ($sim$3.4% $pm$0.35%) for B8-type stars in epoch # 1 (epoch # 2). We observe a clear population of cluster Be stars at early fractional main sequence lifetimes, indicating that a subset of Be stars emerge onto the ZAMS as rapid rotators. Be stars are 2.8x rarer in M31 for the earliest sub-types compared to the SMC, confirming that the fractional Be content decreases in significantly more metal rich environments (like the Milky Way and M31). However, M31 does not follow a clear trend of Be fraction decreasing with metallicity compared to the Milky Way, which may reflect that the Be phenomenon is enhanced with evolutionary age. The rate of disk-loss or disk-regeneration episodes we observe, 22% $pm$ 2% yr$^{-1}$, is similar to that observed for seven other Galactic clusters reported in the literature, assuming these latter transient fractions scale by a linear rate. The similar number of disk-loss events (57) as disk-renewal events (43) was unexpected since disk dissipation time-scales can be $sim$2x the typical time-scales for disk build-up phases.
We present a new measurement of the volumetric rate of Type Ia supernova up to a redshift of 1.7, using the Hubble Space Telescope (HST) GOODS data combined with an additional HST dataset covering the North GOODS field collected in 2004. We employ a novel technique that does not require spectroscopic data for identifying Type Ia supernovae (although spectroscopic measurements of redshifts are used for over half the sample); instead we employ a Bayesian approach using only photometric data to calculate the probability that an object is a Type Ia supernova. This Bayesian technique can easily be modified to incorporate improved priors on supernova properties, and it is well-suited for future high-statistics supernovae searches in which spectroscopic follow up of all candidates will be impractical. Here, the method is validated on both ground- and space-based supernova data having some spectroscopic follow up. We combine our volumetric rate measurements with low redshift supernova data, and fit to a number of possible models for the evolution of the Type Ia supernova rate as a function of redshift. The data do not distinguish between a flat rate at redshift > 0.5 and a previously proposed model, in which the Type Ia rate peaks at redshift >1 due to a significant delay from star-formation to the supernova explosion. Except for the highest redshifts, where the signal to noise ratio is generally too low to apply this technique, this approach yields smaller or comparable uncertainties than previous work.
We present a study of the star cluster population in the starburst irregular galaxy NGC 4449 based on B, V, I, and Ha images taken with the Advanced Camera for Surveys on the Hubble Space Telescope. We derive the cluster properties such as size, ellipticity, and total magnitudes. Cluster ages and masses are derived fitting the observed spectral energy distributions with different population synthesis models. Our analysis is strongly affected by the age-metallicity degeneracy; however, if we assume a metallicity of ~1/4 solar, as derived from spectroscopy of HII regions, we find that the clusters have ages distributed quite continuously over a Hubble time, and they have masses from ~10^3 M_sun up to ~2 x 10^6 M_sun, assuming a Salpeters IMF down to 0.1 M_sun. Young clusters are preferentially located in regions of young star formation, while old clusters are distributed over the whole NGC 4449 field of view, like the old stars (although we notice that some old clusters follow linear structures, possibly a reflection of past satellite accretion). The high SF activity in NGC 4449 is confirmed by its specific frequency of young massive clusters, higher than the average value found in nearby spirals and in the LMC (but lower than in other starburst dwarfs such as NGC 1705 and NGC 1569), and by the flat slope of the cluster luminosity function (dN(L_V)propto L_V^{-1.5} dL for clusters younger than 1 Gyr). We use the upper envelope of the cluster log(mass) versus log(age) distribution to quantify cluster disruption, and do not find evidence for the high (90%) long-term infant mortality found by some studies. For the red clusters, we find correlations between size, ellipticity, luminosity and mass: brighter and more massive clusters tend to be more compact, and brighter clusters tend to be also more elliptical.
(abridged) We examine the spatial and temporal stability of the HST ACS Wide Field Camera (WFC) point spread function (PSF) using the two square degree COSMOS survey. We show that stochastic aliasing of the PSF necessarily occurs during `drizzling. This aliasing is maximal if the output pixel scale is equal to the input pixel scale of 0.05. We show that this source of PSF variation can be significantly reduced by choosing a Gaussian drizzle kernel and by setting the output pixel size to 0.03. We show that the PSF is temporally unstable, most likely due to thermal fluctuations in the telescopes focus. We find that the primary manifestation of this thermal drift in COSMOS images is an overall slow periodic focus change. Using a modified version of TinyTim, we create undistorted stars in a 30x30 grid across the ACS WFC CCDs. These PSF models are created for telescope focus values in the range -10 microns to +5 microns, thus spanning the allowed range of telescope focus values. We then use the approximately ten well measured stars in each COSMOS field to pick the best-fit focus value for each field. The TinyTim model stars are then used to perform PSF corrections for weak lensing allowing systematics due to incorrectly modeled PSFs to be greatly reduced. We have made the software for PSF modeling using our modified version of TinyTim available to the astronomical community. We show the effects of Charge Transfer Efficiency (CTE) degradation, which distorts the object in the readout direction, mimicking a weak lensing signal. We derive a parametric correction for the effect of CTE on the shapes of objects in the COSMOS field as a function of observation date, position within the ACS WFC field, and object flux.