Do you want to publish a course? Click here

The cluster population of the irregular galaxy NGC 4449 as seen by the Hubble Advanced Camera for Surveys

290   0   0.0 ( 0 )
 Added by Francesca Annibali
 Publication date 2011
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present a study of the star cluster population in the starburst irregular galaxy NGC 4449 based on B, V, I, and Ha images taken with the Advanced Camera for Surveys on the Hubble Space Telescope. We derive the cluster properties such as size, ellipticity, and total magnitudes. Cluster ages and masses are derived fitting the observed spectral energy distributions with different population synthesis models. Our analysis is strongly affected by the age-metallicity degeneracy; however, if we assume a metallicity of ~1/4 solar, as derived from spectroscopy of HII regions, we find that the clusters have ages distributed quite continuously over a Hubble time, and they have masses from ~10^3 M_sun up to ~2 x 10^6 M_sun, assuming a Salpeters IMF down to 0.1 M_sun. Young clusters are preferentially located in regions of young star formation, while old clusters are distributed over the whole NGC 4449 field of view, like the old stars (although we notice that some old clusters follow linear structures, possibly a reflection of past satellite accretion). The high SF activity in NGC 4449 is confirmed by its specific frequency of young massive clusters, higher than the average value found in nearby spirals and in the LMC (but lower than in other starburst dwarfs such as NGC 1705 and NGC 1569), and by the flat slope of the cluster luminosity function (dN(L_V)propto L_V^{-1.5} dL for clusters younger than 1 Gyr). We use the upper envelope of the cluster log(mass) versus log(age) distribution to quantify cluster disruption, and do not find evidence for the high (90%) long-term infant mortality found by some studies. For the red clusters, we find correlations between size, ellipticity, luminosity and mass: brighter and more massive clusters tend to be more compact, and brighter clusters tend to be also more elliptical.



rate research

Read More

We present the results from a weak gravitational lensing study of the merging cluster A520 based on the analysis of Hubble Space Telescope/Advanced Camera for Surveys (ACS) data. The excellent data quality allows us to reach a mean number density of source galaxies of ~109 per sq. arcmin, which improves both resolution and significance of the mass reconstruction compared to a previous study based on Wide Field Planetary Camera 2 (WFPC2) images. We take care in removing instrumental effects such as the trailing of charge due to radiation damage of the ACS detector and the position-dependent point spread function (PSF). This new ACS analysis confirms the previous claims that a substantial amount of dark mass is present between two luminous subclusters. We examine the distribution of cluster galaxies and observe very little light at this location. We find that the centroid of the dark peak in the current ACS analysis is offset to the southwest by ~1 arcmin with respect to the centroid from the WFPC2 analysis. Interestingly, this new centroid is in better spatial agreement with the location where the X-ray emission is strongest, and the mass-to-light ratio estimated with this centroid is much higher 813+-78 M_sun/L_Rsun than the previous value; the aperture mass based on the WFPC2 centroid provides a slightly lower, but consistent mass. Although we cannot provide a definite explanation for the presence of the dark peak, we discuss a revised scenario, wherein dark matter with a more conventional range sigma_DM/m_DM < 1 cm^2/g of self-interacting cross-section can lead to the detection of this dark substructure. If supported by detailed numerical simulations, this hypothesis opens up the possibility that the A520 system can be used to establish a lower limit of the self-interacting cross-section of dark matter.
128 - F. Annibali 2018
We present intermediate-resolution (R$sim$1000) spectra in the $sim$3500-10,000 A range of 14 globular clusters in the magellanic irregular galaxy NGC 4449 acquired with the Multi Object Double Spectrograph on the Large Binocular Telescope. We derived Lick indices in the optical and the CaII-triplet index in the near-infrared in order to infer the clusters stellar population properties. The inferred cluster ages are typically older than $sim$9 Gyr, although ages are derived with large uncertainties. The clusters exhibit intermediate metallicities, in the range $-1.2lesssim$[Fe/H]$lesssim-0.7$, and typically sub-solar [$alpha/Fe$] ratios, with a peak at $sim-0.4$. These properties suggest that i) during the first few Gyrs NGC 4449 formed stars slowly and inefficiently, with galactic winds having possibly contributed to the expulsion of the $alpha$-elements, and ii) globular clusters in NGC 4449 formed relatively late, from a medium already enriched in the products of type Ia supernovae. The majority of clusters appear also under-abundant in CN compared to Milky Way halo globular clusters, perhaps because of the lack of a conspicuous N-enriched, second-generation of stars like that observed in Galactic globular clusters. Using the cluster velocities, we infer the dynamical mass of NGC 4449 inside 2.88 kpc to be M($<$2.88 kpc)=$3.15^{+3.16}_{-0.75} times 10^9~M_odot$. We also report the serendipitous discovery of a planetary nebula within one of the targeted clusters, a rather rare event.
We report the discovery in our HST ACS B, V, and I images of NGC 4449 of a globular cluster (GC) which appears associated with two tails of blue stars. The cluster is massive (M~1.7x10^6 M_sun) and highly flattened (epsilon~0.24). From the color-magnitude diagrams of the resolved stars we infer active star formation in the tails over the past ~200 Myr. In a diagram of mean projected mass density inside r_e versus total mass the cluster lies at the upper end of the GC distribution, where galaxy nuclei are. The north-west tail is associated with a concentration of HI and infrared (dust/PAHs) emission which appears as part of a much longer stream wrapping around the galaxy. These properties suggest that the cluster may be the nucleus of a former gas-rich satellite galaxy undergoing tidal disruption by NGC 4449. If so, the cluster is seen in an earlier phase compared to other suggested nuclei of disrupted galaxies such as omega Cen (Milky Way) and G1 (M31).
421 - F. Annibali 2008
We present photometry with the Advanced Camera for Surveys (ACS) on the Hubble Space Telescope (HST) of stars in the Magellanic starburst galaxy NGC 4449. The galaxy has been imaged in the F435W (B), F555W (V) and F814W (I) broad-band filters, and in the F658N (Halpha) narrow-band filter. Our photometry includes ~300,000 objects in the (B, V) color-magnitude diagram (CMD) down to V < 28, and ~400,000 objects in the (V, I) CMD, down to I < 27 . A subsample of ~200,000 stars has been photometrized in all the three bands simultaneously. The features observed in the CMDs imply a variety of stellar ages up to at least 1 Gyr, and possibly as old as a Hubble time. The spatial variation of the CMD morphology and of the red giant branch colors point toward the presence of an age gradient: young and intermediate-age stars tend to be concentrated toward the galactic center, while old stars are present everywhere. The spatial variation in the average luminosity of carbon stars suggests that there is not a strong metallicity gradient (< 0.2 dex). Also, we detect an interesting resolved star cluster on the West side of the galaxy, surrounded by a symmetric tidal or spiral feature consisting of young stars. The positions of the stars in NGC 4449 younger than 10 Myr are strongly correlated with the Halpha emission. We derive the distance of NGC 4449 from the tip of the red giant branch to be D=3.82 pm 0.27 Mpc. This result is in agreement with the distance that we derive from the luminosity of the carbon stars.
71 - T. York 2004
We present deep optical observations of the gravitational lens system CLASS B0218+357, from which we derive an estimate of the Hubble constant. Extensive radio observations have reduced the degeneracies between Hubbles constant and the mass model in this lens to one involving only the position of the radio-quiet lensing galaxy relative to the lensed images. B0218+357 has an image separation of only 334 mas, so optical observations have previously been unable to resolve the lens galaxy from the bright lensed images. Using the new Advanced Camera for Surveys installed on the Hubble Space Telescope, we have measured the separation between the lens galaxy centre and the brightest image. The position found, and hence our estimate of Hubbles constant, depends on our approach to the spiral arms in B0218+357. If the most prominent arms are left unmasked, we find a value for Hubbles constant of 70+/-5 km/s /Mpc (95% confidence). If the spiral arms are masked out, we find a value of 61+/-7 km/s /Mpc (95% confidence).
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا