Do you want to publish a course? Click here

The Stability of the Point Spread Function of the Advanced Camera for Surveys on the Hubble Space Telescope and Implications for Weak Gravitational Lensing

105   0   0.0 ( 0 )
 Added by Jason Dennis Rhodes
 Publication date 2007
  fields Physics
and research's language is English




Ask ChatGPT about the research

(abridged) We examine the spatial and temporal stability of the HST ACS Wide Field Camera (WFC) point spread function (PSF) using the two square degree COSMOS survey. We show that stochastic aliasing of the PSF necessarily occurs during `drizzling. This aliasing is maximal if the output pixel scale is equal to the input pixel scale of 0.05. We show that this source of PSF variation can be significantly reduced by choosing a Gaussian drizzle kernel and by setting the output pixel size to 0.03. We show that the PSF is temporally unstable, most likely due to thermal fluctuations in the telescopes focus. We find that the primary manifestation of this thermal drift in COSMOS images is an overall slow periodic focus change. Using a modified version of TinyTim, we create undistorted stars in a 30x30 grid across the ACS WFC CCDs. These PSF models are created for telescope focus values in the range -10 microns to +5 microns, thus spanning the allowed range of telescope focus values. We then use the approximately ten well measured stars in each COSMOS field to pick the best-fit focus value for each field. The TinyTim model stars are then used to perform PSF corrections for weak lensing allowing systematics due to incorrectly modeled PSFs to be greatly reduced. We have made the software for PSF modeling using our modified version of TinyTim available to the astronomical community. We show the effects of Charge Transfer Efficiency (CTE) degradation, which distorts the object in the readout direction, mimicking a weak lensing signal. We derive a parametric correction for the effect of CTE on the shapes of objects in the COSMOS field as a function of observation date, position within the ACS WFC field, and object flux.



rate research

Read More

We present the results from a weak gravitational lensing study of the merging cluster A520 based on the analysis of Hubble Space Telescope/Advanced Camera for Surveys (ACS) data. The excellent data quality allows us to reach a mean number density of source galaxies of ~109 per sq. arcmin, which improves both resolution and significance of the mass reconstruction compared to a previous study based on Wide Field Planetary Camera 2 (WFPC2) images. We take care in removing instrumental effects such as the trailing of charge due to radiation damage of the ACS detector and the position-dependent point spread function (PSF). This new ACS analysis confirms the previous claims that a substantial amount of dark mass is present between two luminous subclusters. We examine the distribution of cluster galaxies and observe very little light at this location. We find that the centroid of the dark peak in the current ACS analysis is offset to the southwest by ~1 arcmin with respect to the centroid from the WFPC2 analysis. Interestingly, this new centroid is in better spatial agreement with the location where the X-ray emission is strongest, and the mass-to-light ratio estimated with this centroid is much higher 813+-78 M_sun/L_Rsun than the previous value; the aperture mass based on the WFPC2 centroid provides a slightly lower, but consistent mass. Although we cannot provide a definite explanation for the presence of the dark peak, we discuss a revised scenario, wherein dark matter with a more conventional range sigma_DM/m_DM < 1 cm^2/g of self-interacting cross-section can lead to the detection of this dark substructure. If supported by detailed numerical simulations, this hypothesis opens up the possibility that the A520 system can be used to establish a lower limit of the self-interacting cross-section of dark matter.
We describe the time- and position-dependent point spread function (PSF) variation of the Wide Field Channel (WFC) of the Advanced Camera for Surveys (ACS) with the principal component analysis (PCA) technique. The time-dependent change is caused by the temporal variation of the $HST$ focus whereas the position-dependent PSF variation in ACS/WFC at a given focus is mainly the result of changes in aberrations and charge diffusion across the detector, which appear as position-dependent changes in elongation of the astigmatic core and blurring of the PSF, respectively. Using >400 archival images of star cluster fields, we construct a ACS PSF library covering diverse environments of the $HST$ observations (e.g., focus values). We find that interpolation of a small number ($sim20$) of principal components or ``eigen-PSFs per exposure can robustly reproduce the observed variation of the ellipticity and size of the PSF. Our primary interest in this investigation is the application of this PSF library to precision weak-lensing analyses, where accurate knowledge of the instruments PSF is crucial. However, the high-fidelity of the model judged from the nice agreement with observed PSFs suggests that the model is potentially also useful in other applications such as crowded field stellar photometry, galaxy profile fitting, AGN studies, etc., which similarly demand a fair knowledge of the PSFs at objects locations. Our PSF models, applicable to any WFC image rectified with the Lanczos3 kernel, are publicly available.
We present results from a 2-epoch HST H$alpha$ emission line survey of the Andromeda Galaxy that overlaps the footprint of the Panchromatic Hubble Andromeda Treasury (PHAT) survey. We find 552 (542) classical Be stars and 8429 (8556) normal B-type stars in epoch # 1 (epoch # 2), yielding an overall fractional Be content of 6.15% $pm$0.26% (5.96% $pm$0.25%). The fractional Be content decreased with spectral sub-type from $sim$23.6% $pm$2.0% ($sim$23.9% $pm$2.0%) for B0-type stars to $sim$3.1% $pm$0.34% ($sim$3.4% $pm$0.35%) for B8-type stars in epoch # 1 (epoch # 2). We observe a clear population of cluster Be stars at early fractional main sequence lifetimes, indicating that a subset of Be stars emerge onto the ZAMS as rapid rotators. Be stars are 2.8x rarer in M31 for the earliest sub-types compared to the SMC, confirming that the fractional Be content decreases in significantly more metal rich environments (like the Milky Way and M31). However, M31 does not follow a clear trend of Be fraction decreasing with metallicity compared to the Milky Way, which may reflect that the Be phenomenon is enhanced with evolutionary age. The rate of disk-loss or disk-regeneration episodes we observe, 22% $pm$ 2% yr$^{-1}$, is similar to that observed for seven other Galactic clusters reported in the literature, assuming these latter transient fractions scale by a linear rate. The similar number of disk-loss events (57) as disk-renewal events (43) was unexpected since disk dissipation time-scales can be $sim$2x the typical time-scales for disk build-up phases.
Weak gravitational lensing is one of the most powerful tools for cosmology, while subject to challenges in quantifying subtle systematic biases. The Point Spread Function (PSF) can cause biases in weak lensing shear inference when the PSF model does not match the true PSF that is convolved with the galaxy light profile. Although the effect of PSF size and shape errors - i.e., errors in second moments - is well studied, weak lensing systematics associated with errors in higher moments of the PSF model require further investigation. The goal of our study is to estimate their potential impact for LSST weak lensing analysis. We go beyond second moments of the PSF by using image simulations to relate multiplicative bias in shear to errors in the higher moments of the PSF model. We find that the current level of errors in higher moments of the PSF model in data from the Hyper Suprime-Cam (HSC) survey can induce a $sim 0.05 $ per cent shear bias, making this effect unimportant for ongoing surveys but relevant at the precision of upcoming surveys such as LSST.
We present a new measurement of the volumetric rate of Type Ia supernova up to a redshift of 1.7, using the Hubble Space Telescope (HST) GOODS data combined with an additional HST dataset covering the North GOODS field collected in 2004. We employ a novel technique that does not require spectroscopic data for identifying Type Ia supernovae (although spectroscopic measurements of redshifts are used for over half the sample); instead we employ a Bayesian approach using only photometric data to calculate the probability that an object is a Type Ia supernova. This Bayesian technique can easily be modified to incorporate improved priors on supernova properties, and it is well-suited for future high-statistics supernovae searches in which spectroscopic follow up of all candidates will be impractical. Here, the method is validated on both ground- and space-based supernova data having some spectroscopic follow up. We combine our volumetric rate measurements with low redshift supernova data, and fit to a number of possible models for the evolution of the Type Ia supernova rate as a function of redshift. The data do not distinguish between a flat rate at redshift > 0.5 and a previously proposed model, in which the Type Ia rate peaks at redshift >1 due to a significant delay from star-formation to the supernova explosion. Except for the highest redshifts, where the signal to noise ratio is generally too low to apply this technique, this approach yields smaller or comparable uncertainties than previous work.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا