No Arabic abstract
Within five different approaches to parton propagation and energy loss in dense matter, a phenomenological study of experimental data on suppression of large $p_T$ single inclusive hadrons in heavy-ion collisions at both RHIC and LHC was carried out. The evolution of bulk medium used in the study for parton propagation was given by 2+1D or 3+1D hydrodynamic models which are also constrained by experimental data on bulk hadron spectra. Values for the jet transport parameter $hat q$ at the center of the most central heavy-ion collisions are extracted or calculated within each model, with parameters for the medium properties that are constrained by experimental data on the hadron suppression factor $R_{AA}$. For a quark with initial energy of 10 GeV we find that $hat qapprox 1.2 pm 0.3$ GeV$^2$/fm at an initial time $tau_0=0.6$ fm/$c$ in Au+Au collisions at $sqrt{s}=200$ GeV/n and $hat qapprox 1.9 pm 0.7 $ GeV$^2$/fm in Pb+Pb collisions at $sqrt{s}=2.76 $ TeV/n. Compared to earlier studies, these represent significant convergence on values of the extracted jet transport parameter, reflecting recent advances in theory and the availability of new experiment data from the LHC.
The Linear Boltzmann Transport (LBT) model coupled to hydrodynamical background is extended to include transport of both light partons and heavy quarks through the quark-gluon plasma (QGP) in high-energy heavy-ion collisions. The LBT model includes both elastic and inelastic medium-interaction of both primary jet shower partons and thermal recoil partons within perturbative QCD (pQCD). It is shown to simultaneously describe the experimental data on heavy and light flavor hadron suppression in high-energy heavy-ion collisions for different centralities at RHIC and LHC energies. More detailed investigations within the LBT model illustrate the importance of both initial parton spectra and the shapes of fragmentation functions on the difference between the nuclear modifications of light and heavy flavor hadrons. The dependence of the jet quenching parameter $hat{q}$ on medium temperature and jet flavor is quantitatively extracted.
Central lead-lead collisions at the LHC energies may pose a particular challenge for jet identification as multiple jets are produced per each collision event. We simulate the jet evolution in central Pb-Pb events at $sqrt{s_{rm NN}} = 2.76$ GeV collision energy with EPOS3 initial state, which typically contains multiple hard scatterings in each event. Therefore the partons from different jets have a significant chance to overlap in momentum space. We find that 30% of the jets with $p_perp > 50$ GeV, identified by the standard anti-$k_perp$ jet finding algorithm with jet cone size R=0.3, contain `intruder particles from overlapping generator-level jets. This fraction increases with increasing beam energy and increasing R. The reconstructed momentum of the jet differs from that of the modelled jet by the loss due to jet partons which are outside of the jet cone and by the gain due to intruder partons. The sum of both may be positive or negative. These intruder partons particularly affect the radial jet momentum distribution because they contribute mostly at large angles $Delta r$ with respect to the jet centre. The study stresses the importance of the jet overlap effect emerging in central lead-lead collisions at the LHC energies, while being negligible in peripheral PbPb or $p$Pb/$pp$ collisions.
We report a new determination of $hat{q}$, the jet transport coefficient of the Quark-Gluon Plasma. We use the JETSCAPE framework, which incorporates a novel multi-stage theoretical approach to in-medium jet evolution and Bayesian inference for parameter extraction. The calculations, based on the MATTER and LBT jet quenching models, are compared to experimental measurements of inclusive hadron suppression in Au+Au collisions at RHIC and Pb+Pb collisions at the LHC. The correlation of experimental systematic uncertainties is accounted for in the parameter extraction. The functional dependence of $hat{q}$ on jet energy or virtuality and medium temperature is based on a perturbative picture of in-medium scattering, with components reflecting the different regimes of applicability of MATTER and LBT. In the multi-stage approach, the switch between MATTER and LBT is governed by a virtuality scale $Q_0$. Comparison of the posterior model predictions to the RHIC and LHC hadron suppression data shows reasonable agreement, with moderate tension in limited regions of phase space. The distribution of $hat{q}/T^3$ extracted from the posterior distributions exhibits weak dependence on jet momentum and medium temperature $T$, with 90% Credible Region (CR) depending on the specific choice of model configuration. The choice of MATTER+LBT, with switching at virtuality $Q_0$, has 90% CR of $2<hat{q}/T^3<4$ for $p_mathrm{T}^mathrm{jet}>40$ GeV/c. The value of $Q_0$, determined here for the first time, is in the range 2.0-2.7 GeV.
We present a new determination of $hat{q}$, the jet transport coefficient of the quark-gluon plasma. Using the JETSCAPE framework, we use Bayesian parameter estimation to constrain the dependence of $hat{q}$ on the jet energy, virtuality, and medium temperature from experimental measurements of inclusive hadron suppression in Au-Au collisions at RHIC and Pb-Pb collisions at the LHC. These results are based on a multi-stage theoretical approach to in-medium jet evolution with the MATTER and LBT jet quenching models. The functional dependence of $hat{q}$ on jet energy, virtuality, and medium temperature is based on a perturbative picture of in-medium scattering, with components reflecting the different regimes of applicability of MATTER and LBT. The correlation of experimental systematic uncertainties is accounted for in the parameter extraction. These results provide state-of-the-art constraints on $hat{q}$ and lay the groundwork to extract additional properties of the quark-gluon plasma from jet measurements in heavy-ion collisions.
We present a jet quenching model within a unified multi-stage framework and demonstrate for the first time a simultaneous description of leading hadrons, inclusive jets, and elliptic flow observables which spans multiple centralities and collision energies. This highlights one of the major successes of the JETSCAPE framework in providing a tool for setting up an effective parton evolution that includes a high-virtuality radiation dominated energy loss phase (MATTER), followed by a low-virtuality scattering dominated (LBT) energy loss phase. Measurements of jet and charged-hadron $R_{AA}$ set strong constraints on the jet quenching model. Jet-medium response is also included through a weakly-coupled transport description.