No Arabic abstract
We explore whether multifield inflationary models make unambiguous predictions for fundamental cosmological observables. Focusing on $N$-quadratic inflation, we numerically evaluate the full perturbation equations for models with 2, 3, and $mathcal{O}(100)$ fields, using several distinct methods for specifying the initial values of the background fields. All scenarios are highly predictive, with the probability distribution functions of the cosmological observables becoming more sharply peaked as $N$ increases. For $N=100$ fields, 95% of our Monte Carlo samples fall in the ranges $n_s in (0.9455,0.9534)$; $alpha in (-9.741,-7.047)times 10^{-4}$; $rin(0.1445,0.1449)$; and $r_mathrm{iso} in (0.02137,3.510)times 10^{-3}$ for the spectral index, running, tensor-to-scalar ratio, and isocurvature-to-adiabatic ratio, respectively. The expected amplitude of isocurvature perturbations grows with $N$, raising the possibility that many-field models may be sensitive to post-inflationary physics and suggesting new avenues for testing these scenarios.
We construct ensembles of random scalar potentials for $N_f$ interacting scalar fields using non-equilibrium random matrix theory, and use these to study the generation of observables during small-field inflation. For $N_f={cal O}({rm few})$, these heavily featured scalar potentials give rise to power spectra that are highly non-linear, at odds with observations. For $N_fgg 1$, the superhorizon evolution of the perturbations is generically substantial, yet the power spectra simplify considerably and become more predictive, with most realisations being well approximated by a linear power spectrum. This provides proof of principle that complex inflationary physics can give rise to simple emergent power spectra. We explain how these results can be understood in terms of large $N_f$ universality of random matrix theory.
The scalar-tensor Dirac-Born-Infeld (DBI) inflation scenario provides a simple mechanism to reduce the large values of the boost factor associated with single field models with DBI action, whilst still being able to drive 60 efolds of inflation. Using a slow-roll approach, we obtain an analytical expression for the spectral index of the perturbations and, moreover, determine numerically the regions of the parameter space of the model capable of giving rise to a power spectrum with amplitude and spectral index within the observed bounds. We find that regions that exhibit significant DBI effects throughout the inflationary period can be discarded by virtue of a blue-tilted spectral index, however, there are a number of viable cases --- associated with a more red-tilted spectral index --- for which the boost factor is initially suppressed by the effect of the coupling between the fields, but increases later to moderate values.
We derive a closed-form, analytical expression for the spectrum of long-wavelength density perturbations in inflationary models with two (or more) inflaton degrees of freedom that is valid in the slow-roll approximation. We illustrate several classes of potentials for which this expression reduces to a simple, algebraic expression.
Inflation is an early period of accelerated cosmic expansion, thought to be sourced by high energy physics. A key task today is to use the influx of increasingly precise observational data to constrain the plethora of inflationary models suggested by fundamental theories of interactions. This requires a robust theoretical framework for quantifying the predictions of such models; helping to develop such a framework is the aim of this thesis. We provide the first complete quantization of subhorizon perturbations for the well-motivated class of multi-field inflationary models with a non-trivial field metric, which we show may yield interesting signatures in the bispectrum of the Cosmic Microwave Background (CMB). The subsequent evolution of perturbations in the superhorizon epoch is then considered, via a covariant extension of the transport formalism. To develop intuition about the relationship between inflationary dynamics and the evolution of cosmic observables, we investigate analytic approximations of superhorizon perturbation evolution. The validity of these analytic results is contingent on reaching a state of adiabaticity which we discuss and illustrate in depth. We then apply our analytic methods to elucidate the types of inflationary dynamics that lead to an enhanced CMB non-Gaussianity, both in its bispectrum and trispectrum. In addition to deriving a number of new simple relations between the non-Gaussianity parameters, we explain dynamically how and why different shapes of inflationary potential lead to particular observational signatures. Candidate theories of high energy physics such as low energy effective string theory also motivate single-field modifications to the Einstein-Hilbert action. We show how a range of such corrections allow for consistency of single-field chaotic inflationary models that are otherwise in tension with observational data.
Inflationary cosmology is the leading explanation of the very early universe. Many different models of inflation have been constructed which fit current observational data. In this work theoretical and numerical methods for constraining the parameter space of a wide class of such models are described. First, string-theoretic models with large non-Gaussian signatures are investigated. An upper bound is placed on the amplitude of primordial gravitational waves produced by ultra-violet Dirac-Born-Infeld inflation. In all but the most finely tuned cases, this bound is incompatible with a lower bound derived for inflationary models which exhibit a red spectrum and detectable non-Gaussianity. By analysing general non-canonical actions, a class of models is found which can evade the upper bound when the phase speed of perturbations is small. The multi-coincident brane scenario with a finite number of branes is one such model. For models with a potentially observable gravitational wave spectrum the number of coincident branes is shown to take only small values. The second method of constraining inflationary models is the numerical calculation of second order perturbations for a general class of single field models. The Klein-Gordon equation at second order, written in terms of scalar field variations only, is numerically solved. The slow roll version of the second order source term is used and the method is shown to be extendable to the full equation. This procedure allows the evolution of second order perturbations in general and the calculation of the non-Gaussianity parameter in cases where there is no analytical solution available.