We derive a closed-form, analytical expression for the spectrum of long-wavelength density perturbations in inflationary models with two (or more) inflaton degrees of freedom that is valid in the slow-roll approximation. We illustrate several classes of potentials for which this expression reduces to a simple, algebraic expression.
We study the behaviour of linear perturbations in multifield coupled quintessence models. Using gauge invariant linear cosmological perturbation theory we provide the full set of governing equations for this class of models, and solve the system numerically. We apply the numerical code to generate growth functions for various examples, and compare these both to the standard $Lambda$CDM model and to current and future observational bounds. Finally, we examine the applicability of the small scale approximation, often used to calculate growth functions in quintessence models, in light of upcoming experiments such as SKA and Euclid. We find the deviation of the full equation results for large k modes from the approximation exceeds the experimental uncertainty for these future surveys. The numerical code, PYESSENCE, written in Python will be publicly available.
We explore whether multifield inflationary models make unambiguous predictions for fundamental cosmological observables. Focusing on $N$-quadratic inflation, we numerically evaluate the full perturbation equations for models with 2, 3, and $mathcal{O}(100)$ fields, using several distinct methods for specifying the initial values of the background fields. All scenarios are highly predictive, with the probability distribution functions of the cosmological observables becoming more sharply peaked as $N$ increases. For $N=100$ fields, 95% of our Monte Carlo samples fall in the ranges $n_s in (0.9455,0.9534)$; $alpha in (-9.741,-7.047)times 10^{-4}$; $rin(0.1445,0.1449)$; and $r_mathrm{iso} in (0.02137,3.510)times 10^{-3}$ for the spectral index, running, tensor-to-scalar ratio, and isocurvature-to-adiabatic ratio, respectively. The expected amplitude of isocurvature perturbations grows with $N$, raising the possibility that many-field models may be sensitive to post-inflationary physics and suggesting new avenues for testing these scenarios.
The phase-integral approximation devised by Froman and Froman, is used for computing cosmological perturbations in the power-law inflationary model. The phase-integral formulas for the scalar and tensor power spectra are explicitly obtained up to ninth-order of the phase-integral approximation. We show that, the phase-integral approximation exactly reproduces the shape of the power spectra for scalar and tensor perturbations as well as the spectral indices. We compare the accuracy of the phase-integral approximation with the results for the power spectrum obtained with the slow-roll and uniform approximation methods.
We study models of inflation with two scalar fields and non-canonical kinetic terms, focusing on the case in which the curvature and isocurvature perturbations are strongly coupled to each other. In the regime where a heavy mode can be identified and integrated out, we clarify the passage from the full two-field model to an effectively single-field description. However, the strong coupling sets a new scale in the system, and affects the evolution of the perturbations as well as the beginning of the regime of validity of the effective field theory. In particular, the predictions of the model are sensitive to the relative hierarchy between the coupling and the mass of the heavy mode. As a result, observables are not given unambiguously in terms of the parameters of an effectively single field model with non-trivial sound speed. Finally, the requirement that the sound horizon crossing occurs within the regime of validity of the effective theory leads to a lower bound on the sound speed. Our analysis is done in an extremely simple toy model of slow-roll inflation, which is chosen for its tractability, but is non-trivial enough to illustrate the richness of the dynamics in non-canonical multi-field models.