No Arabic abstract
We construct ensembles of random scalar potentials for $N_f$ interacting scalar fields using non-equilibrium random matrix theory, and use these to study the generation of observables during small-field inflation. For $N_f={cal O}({rm few})$, these heavily featured scalar potentials give rise to power spectra that are highly non-linear, at odds with observations. For $N_fgg 1$, the superhorizon evolution of the perturbations is generically substantial, yet the power spectra simplify considerably and become more predictive, with most realisations being well approximated by a linear power spectrum. This provides proof of principle that complex inflationary physics can give rise to simple emergent power spectra. We explain how these results can be understood in terms of large $N_f$ universality of random matrix theory.
We explore whether multifield inflationary models make unambiguous predictions for fundamental cosmological observables. Focusing on $N$-quadratic inflation, we numerically evaluate the full perturbation equations for models with 2, 3, and $mathcal{O}(100)$ fields, using several distinct methods for specifying the initial values of the background fields. All scenarios are highly predictive, with the probability distribution functions of the cosmological observables becoming more sharply peaked as $N$ increases. For $N=100$ fields, 95% of our Monte Carlo samples fall in the ranges $n_s in (0.9455,0.9534)$; $alpha in (-9.741,-7.047)times 10^{-4}$; $rin(0.1445,0.1449)$; and $r_mathrm{iso} in (0.02137,3.510)times 10^{-3}$ for the spectral index, running, tensor-to-scalar ratio, and isocurvature-to-adiabatic ratio, respectively. The expected amplitude of isocurvature perturbations grows with $N$, raising the possibility that many-field models may be sensitive to post-inflationary physics and suggesting new avenues for testing these scenarios.
Upcoming measurements of the small-scale primary cosmic microwave background (CMB) temperature and polarization power spectra ($TT$/$TE$/$EE$) are anticipated to yield transformative constraints on new physics, including the effective number of relativistic species in the early universe ($N_{rm eff}$). However, at multipoles $ell gtrsim 3000$, the primary CMB power spectra receive significant contributions from gravitational lensing. While these modes still carry primordial information, their theoretical modeling requires knowledge of the CMB lensing convergence power spectrum, $C_L^{kappakappa}$, including on small scales where it is affected by nonlinear gravitational evolution and baryonic feedback processes. Thus, the high-$ell$ primary CMB is sensitive to these late-time, nonlinear effects. Here, we show that inaccuracies in the modeling of $C_L^{kappakappa}$ can yield surprisingly large biases on cosmological parameters inferred from the primary CMB power spectra measured by the upcoming Simons Observatory and CMB-S4 experiments. For CMB-S4, the biases can be as large as $1.6sigma$ on the Hubble constant $H_0$ in a fit to $Lambda$CDM and $1.2sigma$ on $N_{rm eff}$ in a fit to $Lambda$CDM+$N_{rm eff}$. We show that these biases can be mitigated by explicitly discarding all $TT$ data at $ell>3000$ or by marginalizing over parameters describing baryonic feedback processes, both at the cost of slightly larger error bars. We also discuss an alternative, data-driven mitigation strategy based on delensing the CMB $T$ and $E$-mode maps. Finally, we show that analyses of upcoming data will require Einstein-Boltzmann codes to be run with much higher numerical precision settings than is currently standard, so as to avoid similar -- or larger -- parameter biases due to inaccurate theoretical predictions.
The recent detection of the primordial gravitational waves from the BICEP2 observation seems to be in tension with the upper bound on the amplitude of tensor perturbations from the PLANCK data. We consider a phenomenological model of inflation in which the microscopical properties of the inflationary fluid such as the equation of state $w$ or the sound speed $c_s$ jump in a sharp manner. We show that the amplitude of the scalar perturbations is controlled by a non-trivial combination of $w$ and $c_s$ before and after the phase transition while the tensor perturbations remains nearly intact. With an appropriate choice of the fluid parameters $w$ and $c_s$ one can suppress the scalar perturbation power spectrum on large scales to accommodate a large tensor amplitude with $r=0.2$ as observed by BICEP2 observation.
Inflation may provide unique insight into the physics at the highest available energy scales that cannot be replicated in any realistic terrestrial experiment. Features in the primordial power spectrum are generically predicted in a wide class of models of inflation and its alternatives, and are observationally one of the most overlooked channels for finding evidence for non-minimal inflationary models. Constraints from observations of the cosmic microwave background cover the widest range of feature frequencies, but the most sensitive constraints will come from future large-scale structure surveys that can measure the largest number of linear and quasi-linear modes.
We examine cosmological perturbations in a dynamical theory of inflation in which an Abelian gauge field couples directly to the inflaton, breaking conformal invariance. When the coupling between the gauge field and the inflaton takes a specific form, inflation becomes anisotropic and anisotropy can persist throughout inflation, avoiding Walds no-hair theorem. After discussing scenarios in which anisotropy can persist during inflation, we calculate the dominant effects of a small persistent anisotropy on the primordial gravitational wave and curvature perturbation power spectra using the in-in formalism of perturbation theory. We find that the primordial power spectra of cosmological perturbations gain significant direction dependence and that the fractional direction dependence of the tensor power spectrum is suppressed in comparison to that of the scalar power spectrum.