No Arabic abstract
Besides superconductivity, copper-oxide high temperature superconductors are susceptible to other types of ordering. We use scanning tunneling microscopy and resonant elastic x-ray scattering measurements to establish the formation of charge ordering in the high-temperature superconductor Bi2Sr2CaCu2O8+x. Depending on the hole concentration, the charge ordering in this system occurs with the same period as those found in Y-based or La-based cuprates, and displays the analogous competition with superconductivity. These results indicate the similarity of charge organization competing with superconductivity across different families of cuprates. We observe this charge ordering to leave a distinct electron-hole asymmetric signature (and a broad resonance centered at +20 meV) in spectroscopic measurements, thereby indicating that it is likely related to the organization of holes in a doped Mott insulator.
We present a comparative study of magnetic excitations in the first two Ruddlesden-Popper members of the Hg-family of high-temperature superconducting cuprates, which are chemically nearly identical and have the highest critical temperature ($T_mathrm{c}$) among all cuprate families. Our inelastic photon scattering experiments reveal that the two compounds paramagnon spectra are nearly identical apart from an energy scale factor of $sim130%$ that matches the ratio of $T_mathrm{c}$s, as expected in magnetic Cooper pairing theories. By relating our observations to other cuprates, we infer that the strength of magnetic interactions determines how high $T_mathrm{c}$ can reach. Our finding can be viewed as a magnetic analogue of the isotope effect, thus firmly supporting models of magnetically mediated high-temperature superconductivity.
To address the issues of superconducting and charge properties in high-T$_c$ cuprates, we perform a quantum Monte Carlo study of an extended three-band Emery model, which explicitly includes attractive interaction $V_{OO}$ between oxygen orbitals. In the physically relevant parameter range, we find that $V_{OO}$ acts to strongly enhance the long-range part of d-wave pairing correlation, with a clear tendency to form long-range superconducting order in the thermodynamic limit. Simultaneously, increasing $|V_{OO}|$ renders a rapid increase of the nematic charge structure factor at most of wavevectors, especially near $textbf{q}=(0,0)$, indicating a dramatic enhancement of nematicity and charge density waves. Our findings suggest that the attraction between oxygen orbitals in high-T$_c$ cuprates is a common thread linking their superconducting and charge properties.
Recent experiments in the cuprates have seen evidence of a transient superconducting state upon optical excitation polarized along the c-axis [R. Mankowsky et al., Nature 516, 71 (2014)]. Motivated by these experiments we propose an extension of the single-layer $t-J-V$ model of cuprates to three dimensions in order to study the effects of inter-plane tunneling on the competition between superconductivity and bond density wave order. We find that an optical pump can suppress the charge order and simultaneously enhance superconductivity, due to the inherent competition between the two. We also provide an intuitive picture of the physical mechanism underlying this effect. Furthermore, based on a simple Floquet theory we estimate the magnitude of the enhancement.
The discovery of high temperature superconductivity in the cuprates in 1986 triggered a spectacular outpouring of creative and innovative scientific inquiry. Much has been learned over the ensuing 28 years about the novel forms of quantum matter that are exhibited in this strongly correlated electron system. This progress has been made possible by improvements in sample quality, coupled with the development and refinement of advanced experimental techniques. In part, avenues of inquiry have been motivated by theoretical developments, and in part new theoretical frameworks have been conceived to account for unanticipated experimental observations. An overall qualitative understanding of the nature of the superconducting state itself has been achieved, while profound unresolved issues have come into increasingly sharp focus concerning the astonishing complexity of the phase diagram, the unprecedented prominence of various forms of collective fluctuations, and the simplicity and insensitivity to material details of the normal state at elevated temperatures. New conceptual approaches, drawing from string theory, quantum information theory, and various numerically implemented approximate approaches to problems of strong correlations are being explored as ways to come to grips with this rich tableaux of interrelated phenomena.
One of the central issues in the recent study of cuprate superconductors is the interplay of charge order with superconductivity. Here the interplay of charge order with superconductivity in cuprate superconductors is studied based on the kinetic-energy-driven superconducting (SC) mechanism by taking into account the intertwining between the pseudogap and SC gap. It is shown that the appearance of the Fermi pockets is closely associated with the emergence of the pseudogap. However, the distribution of the spectral weight of the SC-state quasiparticle spectrum on the Fermi arc, or equivalently the front side of the Fermi pocket, and back side of Fermi pocket is extremely anisotropic, where the most part of the spectral weight is located around the tips of the Fermi arcs, which in this case coincide with the hot spots on the electron Fermi surface (EFS). In particular, as charge order in the normal-state, this EFS instability drives charge order in the SC-state, with the charge-order wave vector that is well consistent with the wave vector connecting the hot spots on the straight Fermi arcs. Furthermore, this charge-order state is doping dependent, with the charge-order wave vector that decreases in magnitude with the increase of doping. Although there is a coexistence of charge order and superconductivity, this charge order antagonizes superconductivity. The results from the SC-state dynamical charge structure factor indicate the existence of a quantitative connection between the low-energy electronic structure and collective response of the electron density. The theory also shows that the pseudogap and charge order have a root in common, they and superconductivity are a natural consequence of the strong electron correlation.