No Arabic abstract
We report the discovery of a new faint dwarf galaxy, GHOSTS I, using HST/ACS data from one of our GHOSTS (Galaxy Halos, Outer disks, Substructure, Thick disk, and Star clusters) fields. Its detected individual stars populate an approximately one magnitude range of its luminosity function (LF). Using synthetic color-magnitude diagrams (CMDs) to compare with the galaxys CMD, we find that the colors and magnitudes of GHOSTS Is individual stars are most consistent with being young helium-burning and asymptotic giant branch stars at a distance of 12 +/- 2 Mpc. Morphologically, GHOSTS I appears to be actively forming stars, so we tentatively classify it as a dwarf irregular (dIrr) galaxy, although future HST observations deep enough to resolve a larger magnitude range in its LF are required to make a more secure classification. GHOSTS Is absolute magnitude is $M_V = -9.85^{+ 0.40}_{- 0.33}$, making it one of the least luminous dIrr galaxies known, and its metallicity is lower than [Fe/H] =-1.5 dex. The half-light radius of GHOSTS I is 226 +/- 38 pc and its ellipticity is 0.47 +/- 0.07, similar to Milky Way and M31 dwarf satellites at comparable luminosity. There are no luminous massive galaxies or galaxy clusters within ~ 4 Mpc from GHOSTS I that could be considered as its host, making it a very isolated dwarf galaxy in the Local Universe.
We report the discovery of a new dwarf galaxy (NGC6503-d1) during the Subaru extended ultraviolet (XUV) disk survey. It is a likely companion of the spiral galaxy NGC6503. The resolved images, in B, V, R, i, and Halpha, show an irregular appearance due to bright stars with underlying, smooth and unresolved stellar emission. It is classified as the transition type (dIrr/dSph). Its structural properties are similar to those of the dwarfs in the Local Group, with a V absolute magnitude ~ -10.5, half-light radius ~400 pc, and central surface brightness ~25.2. Despite the low stellar surface brightness environment, one HII region was detected, though its Halpha luminosity is low, indicating an absence of any appreciable O-stars at the current epoch. The presence of multiple stellar populations is indicated by the color-magnitude diagram of ~300 bright resolved stars and the total colors of the dwarf, with the majority of its total stellar mass ~4x10^6 Msun in an old stellar population.
Laevens et al. recently discovered Triangulum II, a satellite of the Milky Way. Its Galactocentric distance is 36 kpc, and its luminosity is only 450 L_sun. Using Keck/DEIMOS, we measured the radial velocities of six member stars within 1.2 of the center of Triangulum II, and we found a velocity dispersion of sigma_v = 5.1 -1.4 +4.0 km/s. We also measured the metallicities of three stars and found a range of 0.8 dex in [Fe/H]. The velocity and metallicity dispersions identify Triangulum II as a dark matter-dominated galaxy. The galaxy is moving very quickly toward the Galactic center (v_GSR = -262 km/s). Although it might be in the process of being tidally disrupted as it approaches pericenter, there is no strong evidence for disruption in our data set. The ellipticity is low, and the mean velocity, <v_helio> = -382.1 +/- 2.9 km/s, rules out an association with the Triangulum-Andromeda substructure or the Pan-Andromeda Archaeological Survey (PAndAS) stellar stream. If Triangulum II is in dynamical equilibrium, then it would have a mass-to-light ratio of 3600 -2100 +3500 M_sun/L_sun, the highest of any non-disrupting galaxy (those for which dynamical mass estimates are reliable). The density within the 3-D half-light radius would be 4.8 -3.5 +8.1 M_sun/pc^3, even higher than Segue 1. Hence, Triangulum II is an excellent candidate for the indirect detection of dark matter annihilation.
Aims. We use stellar line-of-sight velocities to constrain the dark matter-density profile of Eridanus 2, an ultra-faint dwarf galaxy ($M_mathrm{V} = -7.1$, $M_* approx 9 times 10^4,M_odot$). We furthermore derive constraints on fundamental properties of self-interacting and fuzzy dark matter scenarios. Methods. We present new observations of Eridanus 2 from MUSE-Faint, a survey of ultra-faint dwarf galaxies with MUSE on the Very Large Telescope, and determine line-of-sight velocities for stars inside the half-light radius. Combined with literature data, we have 92 stellar tracers out to twice the half-light radius. We constrain models of cold dark matter, self-interacting dark matter, and fuzzy dark matter with these tracers, using CJAM and pyGravSphere for the dynamical analysis. Results. We find substantial evidence for cold dark matter over self-interacting dark matter and weak evidence for fuzzy dark matter over cold dark matter. We find a virial mass $M_{200} sim 10^8,M_odot$ and astrophysical factors $J(alpha_mathrm{c}^J) sim 10^{11},M_odot^2,mathrm{kpc}^{-5}$ and $D(alpha_mathrm{c}^D) sim 10^2$-$10^{2.5},M_odot,mathrm{kpc}^{-2}$. We do not resolve a core ($r_mathrm{c} < 47,mathrm{pc}$, 68-% level) or soliton ($r_mathrm{sol} < 7.2,mathrm{pc}$, 68-% level). These limits are equivalent to an effective self-interaction coefficient $fGamma < 2.2 times 10^{-29},mathrm{cm}^3,mathrm{s}^{-1},mathrm{eV}^{-1},c^2$ and a fuzzy-dark-matter particle mass $m_mathrm{a} > 4.0 times 10^{-20},mathrm{eV},c^{-2}$. The constraint on self-interaction is complementary to those from gamma-ray searches. The constraint on fuzzy-dark-matter particle mass is inconsistent with those obtained for larger dwarf galaxies, suggesting that the flattened density profiles of those galaxies are not caused by fuzzy dark matter. (Abridged)
The demographics of dwarf galaxy populations have long been in tension with predictions from the Cold Dark Matter (CDM) paradigm. If primordial density fluctuations were scale-free as predicted, dwarf galaxies should themselves host dark matter subhaloes, the most massive of which may have undergone star formation resulting in dwarf galaxy groups. Ensembles of dwarf galaxies are observed as satellites of more massive galaxies, and there is observational and theoretical evidence to suggest that these satellites at z=0 were captured by the massive host halo as a group. However, the evolution of dwarf galaxies is highly susceptible to environment making these satellite groups imperfect probes of CDM in the low mass regime. We have identified one of the clearest examples to date of hierarchical structure formation at low masses: seven isolated, spectroscopically confirmed groups with only dwarf galaxies as members. Each group hosts 3-5 known members, has a baryonic mass of ~4.4 x 10^9 to 2 x 10^10 Msun, and requires a mass-to-light ratio of <100 to be gravitationally bound. Such groups are predicted to be rare theoretically and found to be rare observationally at the current epoch and thus provide a unique window into the possible formation mechanism of more massive, isolated galaxies.
We present chemical abundance measurements of two metal-poor red giant stars in the ultra-faint dwarf galaxy Bootes I, based on Magellan/MIKE high-resolution spectra. For Boo I-980, with [Fe/H]=-3.1, we present the first elemental abundance measurements while Boo I-127, with [Fe/H]=-2.0, shows abundances in good agreement with previous measurements. Light and iron-peak element abundance ratios in the two Bootes I stars, as well as those of most other Boootes I members, collected from the literature, closely resemble those of regular metal-poor halo stars. Neutron-capture element abundances Sr and Ba are systematically lower than the main halo trend, and also show a significant abundance spread. Overall, this is similar to what has been found for other ultra-faint dwarf galaxies. We apply corrections to the carbon abundances (commensurate with stellar evolutionary status) of the entire sample and find 21% of stars to be carbon-enhanced metal-poor (CEMP) stars, compared to 13% without using the carbon correction. We reassess the metallicity distribution functions (MDF) for the CEMP stars and non-CEMP stars, and confirm earlier claims that CEMP stars might belong to a different, earlier population. Applying a set of abundance criteria to test to what extent Bootes I could be a surviving first galaxy suggests that it is one of the earliest assembled systems that perhaps received gas from accretion from other clouds in the system, or from swallowing a first galaxy or building block type object. This resulted in the two stellar populations observable today.