No Arabic abstract
We present chemical abundance measurements of two metal-poor red giant stars in the ultra-faint dwarf galaxy Bootes I, based on Magellan/MIKE high-resolution spectra. For Boo I-980, with [Fe/H]=-3.1, we present the first elemental abundance measurements while Boo I-127, with [Fe/H]=-2.0, shows abundances in good agreement with previous measurements. Light and iron-peak element abundance ratios in the two Bootes I stars, as well as those of most other Boootes I members, collected from the literature, closely resemble those of regular metal-poor halo stars. Neutron-capture element abundances Sr and Ba are systematically lower than the main halo trend, and also show a significant abundance spread. Overall, this is similar to what has been found for other ultra-faint dwarf galaxies. We apply corrections to the carbon abundances (commensurate with stellar evolutionary status) of the entire sample and find 21% of stars to be carbon-enhanced metal-poor (CEMP) stars, compared to 13% without using the carbon correction. We reassess the metallicity distribution functions (MDF) for the CEMP stars and non-CEMP stars, and confirm earlier claims that CEMP stars might belong to a different, earlier population. Applying a set of abundance criteria to test to what extent Bootes I could be a surviving first galaxy suggests that it is one of the earliest assembled systems that perhaps received gas from accretion from other clouds in the system, or from swallowing a first galaxy or building block type object. This resulted in the two stellar populations observable today.
We report the detection of three RR Lyrae (RRL) stars (two RRc and one RRab) in the ultra-faint dwarf (UFD) galaxy Centaurus I (CenI) and two Milky Way (MW) $delta$ Scuti/SX Phoenicis stars based on multi-epoch $giz$ DECam observations. The two RRc stars are located within 2 times the half-light radius (r$_h$) of Cen I, while the RRab star (CenI-V3) is at $sim6$ r$_h$. The presence of three distant RRL stars clustered this tightly in space represents a 4.7$sigma$ excess relative to the smooth distribution of RRL in the Galactic halo. Using the newly detected RRL stars, we obtain a distance modulus to Cen I of $mu_0 = 20.354 pm 0.002$ mag ($sigma=0.03$ mag), a heliocentric distance of D$_odot = 117.7 pm 0.1$ kpc ($sigma=1.6$ kpc), with systematic errors of $0.07$ mag and $4$ kpc. The location of the Cen I RRL stars in the Bailey diagram is in agreement with other UFD galaxies (mainly Oosterhoff II). Finally, we study the relative rate of RRc+RRd (RRcd) stars ($f_{cd}$) in UFD and classical dwarf galaxies. The full sample of MW dwarf galaxies gives a mean of $f_{cd} = 0.28$. While several UFD galaxies, such as Cen I, present higher RRcd ratios, if we combine the RRL populations of all UFD galaxies, the RRcd ratio is similar to the one obtained for the classical dwarfs ($f_{cd}$ $sim$ 0.3). Therefore, there is no evidence for a different fraction of RRcd stars in UFD and classical dwarf galaxies.
We develop, implement and characterise an enhanced data reduction approach which delivers precise, accurate, radial velocities from moderate resolution spectroscopy with the fibre-fed VLT/FLAMES+GIRAFFE facility. This facility, with appropriate care, delivers radial velocities adequate to resolve the intrinsic velocity dispersions of the very faint dSph dwarf galaxies. Importantly, repeated measurements let us reliably calibrate our individual velocity errors ($0.2 leq delta_Vleq 5$ km s$^{-1}$) and directly detect stars with variable radial velocities. We show, by application to the Bootes-1 dwarf spheroidal, that the intrinsic velocity dispersion of this system is significantly below 6.5,km/s reported by previous studies. Our data favor a two-population model of Bootes-1, consisting of a majority `cold stellar component, with velocity dispersion $2.4^{+0.9}_{-0.5}$,km/s, and a minority `hot stellar component, with velocity dispersion $sim 9$,km/s, although we can not completely rule out a single component distribution with velocity dispersion $4.6^{0.8}_{-0.6}$,km/s. We speculate this complex velocity distribution actually reflects the distribution of velocity anisotropy in Bootes-1, which is a measure of its formation processes.
We present the high-resolution spectroscopic analysis of two new extremely metal-poor stars (EMPS) candidates in the dwarf spheroidal galaxy Sextans. These targets were pre-selected from medium resolution spectra centered around the Ca II triplet in the near-infrared and followed-up at higher resolution with VLT/UVES. We confirm their low metallicities with [Fe/H]=-2.95 and [Fe/H]=-3.01, placing them among the most metal-poor stars known in Sextans. The abundances of 18 elements, including C, Na, the alpha-elements, Fe-peak, and neutron capture elements, are determined. In particular, we present the first measurements of Zn in a classical dwarf at extremely low metallicity. There has been previous hints of a large scatter in the abundance ratios of the Sextans stellar population around [Fe/H] -3 when compared to other galaxies. We took the opportunity of this work to re-analyse the full sample of EMPS and find a Milky-Way -like plateau and a normal dispersion at fixed metallicity.
We present a new spectroscopic study of the dwarf galaxy Bootes I (Boo I) with data from the Anglo-Australian Telescope and its AAOmega spectrograph together with the Two Degree Field multi-object system. We observed 36 high-probability Boo I stars selected using Gaia Early Data Release 3 proper motions and photometric metallicities from the Pristine survey. Out of those, 29 are found to be Boo Is stars, resulting in an excellent success rate of 80% at finding new members. Our analysis uses a new pipeline developed to estimate radial velocities and equivalent widths of the calcium triplet lines from Gaussian and Voigt line profile fits. The metallicities of 18 members are derived, including 3 extremely metal-poor stars ([Fe/H] < -3.0), which translates into an exceptional success rate of 25% at finding them with the combination of Pristine and Gaia. Using the large spatial extent of our new members that spans up to 4.1 half-light radii and spectroscopy from the literature, we are able to detect a systemic velocity gradient of 0.15+/-0.10 km s-1 arcmin-1 and a small but resolved metallicity gradient of -0.007+/-0.003 dex arcmin-1. Finally, we show that Boo I is more elongated than previously thought with an ellipticity of {epsilon} = 0.68+/-0.15. Its velocity and metallicity gradients as well as its elongation suggest that Boo I may have been affected by tides, a result supported by direct dynamical modelling.
The galaxy-wide stellar initial mass function (gwIMF) of a galaxy in dependence of its metallicity and star formation rate (SFR) can be calculated by the integrated galactic IMF (IGIMF) theory. Lacchin et al. (2019) apply the IGIMF theory for the first time to study the chemical evolution of the ultra-faint dwarf (UFD) satellite galaxies and failed to reproduce the data. Here, we find that the IGIMF theory is naturally consistent with the data. We apply the time-evolving gwIMF calculated at each timestep. The number of type Ia supernova explosions per unit stellar mass formed is renormalised according to the gwIMF. The chemical evolution of Bootes I, one of the best observed UFD, is calculated. Our calculation suggests a mildly bottom-light and top-light gwIMF for Bootes I, and that this UFD has the same gas-consumption timescale as other dwarfs but was quenched about 0.1 Gyr after formation, being consistent with independent estimations and similar to Dragonfly 44. The recovered best fitting input parameters in this work are not covered in the work of Lacchin et al. (2019), creating the discrepancy between our conclusions. In addition, a detailed discussion of uncertainties is presented addressing how the results of chemical evolution models depend on applied assumptions. This study demonstrates the power of the IGIMF theory in understanding the star-formation in extreme environments and shows that UDFs are a promising pathway to constrain the variation of the low-mass stellar IMF.