No Arabic abstract
We provide an analytic solution to the first-passage time (FPT) problem of a piecewise-smooth stochastic model, namely Brownian motion with dry friction, using two different but closely related approaches which are based on eigenfunction decompositions on the one hand and on the backward Kolmogorov equation on the other. For the simple case containing only dry friction, a phase transition phenomenon in the spectrum is found which relates to the position of the exit point, and which affects the tail of the FPT distribution. For the model containing as well a driving force and viscous friction the impact of the corresponding stick-slip transition and of the transition to ballistic exit is evaluated quantitatively. The proposed model is one of the very few cases where FPT properties are accessible by analytical means.
We investigate piecewise-linear stochastic models as with regards to the probability distribution of functionals of the stochastic processes, a question which occurs frequently in large deviation theory. The functionals that we are looking into in detail are related to the time a stochastic process spends at a phase space point or in a phase space region, as well as to the motion with inertia. For a Langevin equation with discontinuous drift, we extend the so-called backward Fokker-Planck technique for nonnegative support functionals to arbitrary support functionals, to derive explicit expressions for the moments of the functional. Explicit solutions for the moments and for the distribution of the so-called local time, the occupation time and the displacement are derived for the Brownian motion with dry friction, including quantitative measures to characterize deviation from Gaussian behaviour in the asymptotic long time limit.
The interplay between Coulomb friction and random excitations is studied experimentally by means of a rotating probe in contact with a stationary granular gas. The granular material is independently fluidized by a vertical shaker, acting as a heat bath for the Brownian-like motion of the probe. Two ball bearings supporting the probe exert nonlinear Coulomb friction upon it. The experimental velocity distribution of the probe, autocorrelation function, and power spectra are compared with the predictions of a linear Boltzmann equation with friction, which is known to simplify in two opposite limits: at high collision frequency, it is mapped to a Fokker-Planck equation with nonlinear friction, whereas at low collision frequency, it is described by a sequence of independent random kicks followed by friction-induced relaxations. Comparison between theory and experiment in these two limits shows good agreement. Deviations are observed at very small velocities, where the real bearings are not well modeled by Coulomb friction.
We present the analysis of the first passage time problem on a finite interval for the generalized Wiener process that is driven by Levy stable noises. The complexity of the first passage time statistics (mean first passage time, cumulative first passage time distribution) is elucidated together with a discussion of the proper setup of corresponding boundary conditions that correctly yield the statistics of first passages for these non-Gaussian noises. The validity of the method is tested numerically and compared against analytical formulae when the stability index $alpha$ approaches 2, recovering in this limit the standard results for the Fokker-Planck dynamics driven by Gaussian white noise.
We study the distribution of first-passage functionals ${cal A}= int_0^{t_f} x^n(t), dt$, where $x(t)$ is a Brownian motion (with or without drift) with diffusion constant $D$, starting at $x_0>0$, and $t_f$ is the first-passage time to the origin. In the driftless case, we compute exactly, for all $n>-2$, the probability density $P_n(A|x_0)=text{Prob}.(mathcal{A}=A)$. This probability density has an essential singular tail as $Ato 0$ and a power-law tail $sim A^{-(n+3)/(n+2)}$ as $Ato infty$. The former is reproduced by the optimal fluctuation method (OFM), which also predicts the optimal paths of the conditioned process for small $A$. For the case with a drift toward the origin, where no exact solution is known for general $n>-1$, the OFM predicts the distribution tails. For $Ato 0$ it predicts the same essential singular tail as in the driftless case. For $Ato infty$ it predicts a stretched exponential tail $-ln P_n(A|x_0)sim A^{1/(n+1)}$ for all $n>0$. In the limit of large Peclet number $text{Pe}= mu x_0/(2D)gg 1$, where $mu$ is the drift velocity, the OFM predicts a large-deviation scaling for all $A$: $-ln P_n(A|x_0)simeqtext{Pe}, Phi_nleft(z= A/bar{A}right)$, where $bar{A}=x_0^{n+1}/{mu(n+1)}$ is the mean value of $mathcal{A}$. We compute the rate function $Phi_n(z)$ analytically for all $n>-1$. For $n>0$ $Phi_n(z)$ is analytic for all $z$, but for $-1<n<0$ it is non-analytic at $z=1$, implying a dynamical phase transition. The order of this transition is $2$ for $-1/2<n<0$, while for $-1<n<-1/2$ the order of transition changes continuously with $n$. Finally, we apply the OFM to the case of $mu<0$ (drift away from the origin). We show that, when the process is conditioned on reaching the origin, the distribution of $mathcal{A}$ coincides with the distribution of $mathcal{A}$ for $mu>0$ with the same $|mu|$.
The motion of an adiabatic piston under dry friction is investigated to clarify the roles of dry friction in non-equilibrium steady states. We clarify that dry friction can reverse the direction of the piston motion and causes a discontinuity or a cusp-like singularity for velocity distribution functions of the piston. We also show that the heat fluctuation relation is modified under dry friction.