Do you want to publish a course? Click here

Statistics of first-passage Brownian functionals

111   0   0.0 ( 0 )
 Added by Baruch Meerson
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study the distribution of first-passage functionals ${cal A}= int_0^{t_f} x^n(t), dt$, where $x(t)$ is a Brownian motion (with or without drift) with diffusion constant $D$, starting at $x_0>0$, and $t_f$ is the first-passage time to the origin. In the driftless case, we compute exactly, for all $n>-2$, the probability density $P_n(A|x_0)=text{Prob}.(mathcal{A}=A)$. This probability density has an essential singular tail as $Ato 0$ and a power-law tail $sim A^{-(n+3)/(n+2)}$ as $Ato infty$. The former is reproduced by the optimal fluctuation method (OFM), which also predicts the optimal paths of the conditioned process for small $A$. For the case with a drift toward the origin, where no exact solution is known for general $n>-1$, the OFM predicts the distribution tails. For $Ato 0$ it predicts the same essential singular tail as in the driftless case. For $Ato infty$ it predicts a stretched exponential tail $-ln P_n(A|x_0)sim A^{1/(n+1)}$ for all $n>0$. In the limit of large Peclet number $text{Pe}= mu x_0/(2D)gg 1$, where $mu$ is the drift velocity, the OFM predicts a large-deviation scaling for all $A$: $-ln P_n(A|x_0)simeqtext{Pe}, Phi_nleft(z= A/bar{A}right)$, where $bar{A}=x_0^{n+1}/{mu(n+1)}$ is the mean value of $mathcal{A}$. We compute the rate function $Phi_n(z)$ analytically for all $n>-1$. For $n>0$ $Phi_n(z)$ is analytic for all $z$, but for $-1<n<0$ it is non-analytic at $z=1$, implying a dynamical phase transition. The order of this transition is $2$ for $-1/2<n<0$, while for $-1<n<-1/2$ the order of transition changes continuously with $n$. Finally, we apply the OFM to the case of $mu<0$ (drift away from the origin). We show that, when the process is conditioned on reaching the origin, the distribution of $mathcal{A}$ coincides with the distribution of $mathcal{A}$ for $mu>0$ with the same $|mu|$.



rate research

Read More

148 - Yaming Chen , Wolfram Just 2013
We provide an analytic solution to the first-passage time (FPT) problem of a piecewise-smooth stochastic model, namely Brownian motion with dry friction, using two different but closely related approaches which are based on eigenfunction decompositions on the one hand and on the backward Kolmogorov equation on the other. For the simple case containing only dry friction, a phase transition phenomenon in the spectrum is found which relates to the position of the exit point, and which affects the tail of the FPT distribution. For the model containing as well a driving force and viscous friction the impact of the corresponding stick-slip transition and of the transition to ballistic exit is evaluated quantitatively. The proposed model is one of the very few cases where FPT properties are accessible by analytical means.
We present the analysis of the first passage time problem on a finite interval for the generalized Wiener process that is driven by Levy stable noises. The complexity of the first passage time statistics (mean first passage time, cumulative first passage time distribution) is elucidated together with a discussion of the proper setup of corresponding boundary conditions that correctly yield the statistics of first passages for these non-Gaussian noises. The validity of the method is tested numerically and compared against analytical formulae when the stability index $alpha$ approaches 2, recovering in this limit the standard results for the Fokker-Planck dynamics driven by Gaussian white noise.
Spatial step edge fluctuations on a multi-component surface of Al/Si(111)-(root3 x root3) were measured via scanning tunneling microscopy over a temperature range of 720K-1070K, for step lengths of L = 65-160 nm. Even though the time scale of fluctuations of steps on this surface varies by orders of magnitude over the indicated temperature ranges, measured first-passage spatial persistence and survival probabilities are temperature independent. The power law functional form for spatial persistence probabilities is confirmed and the symmetric spatial persistence exponent is measured to be theta = 0.498 +/- 0.062 in agreement with the theoretical prediction theta = 1/2. The survival probability is found to scale directly with y/L, where y is the distance along the step edge. The form of the survival probabilities agree quantitatively with the theoretical prediction, which yields exponential decay in the limit of small y/L. The decay constant is found experimentally to be ys/L= 0.076 +/- 0.033 for y/L <= 0.2.
65 - M.Giona , M. DOvidio , D. Cocco 2019
Levy walks (LWs) define a fundamental class of finite velocity stochastic processes that can be introduced as a special case of continuous time random walks. Alternatively, there is a hyperbolic representation of them in terms of partial probability density waves. Using the latter framework we explore the impact of aging on LWs, which can be viewed as a specific initial preparation of the particle ensemble with respect to an age distribution. We show that the hyperbolic age formulation is suitable for a simple integral representation in terms of linear Volterra equations for any initial preparation. On this basis relaxation properties and first passage time statistics in bounded domains are studied by connecting the latter problem with solute release kinetics. We find that even normal diffusive LWs may display anomalous relaxation properties such as stretched exponential decay. We then discuss the impact of aging on the first passage time statistics of LWs by developing the corresponding Volterra integral representation. As a further natural generalization the concept of LWs with wearing is introduced to account for mobility losses.
Fractional Brownian motion is a non-Markovian Gaussian process indexed by the Hurst exponent $Hin [0,1]$, generalising standard Brownian motion to account for anomalous diffusion. Functionals of this process are important for practical applications as a standard reference point for non-equilibrium dynamics. We describe a perturbation expansion allowing us to evaluate many non-trivial observables analytically: We generalize the celebrated three arcsine-laws of standard Brownian motion. The functionals are: (i) the fraction of time the process remains positive, (ii) the time when the process last visits the origin, and (iii) the time when it achieves its maximum (or minimum). We derive expressions for the probability of these three functionals as an expansion in $epsilon = H-tfrac{1}{2}$, up to second order. We find that the three probabilities are different, except for $H=tfrac{1}{2}$ where they coincide. Our results are confirmed to high precision by numerical simulations.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا