Do you want to publish a course? Click here

Resonance spectroscopy of gravitational states of antihydrogen

100   0   0.0 ( 0 )
 Added by Alexei Voronin
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study a method to induce resonant transitions between antihydrogen quantum states above a material surface in the gravitational field of the Earth. The method consists in applying a gradient of magnetic field which is temporally oscillating with the frequency equal to a frequency of a transition between gravitational states of antihydrogen. Corresponding resonant change in a spatial density of antihydrogen atoms can be measured as a function of the frequency of applied field. We estimate an accuracy of measuring antihydrogen gravitational states spacing and show how a value of the gravitational mass of the antihydrogen atom can be deduced from such a measurement.



rate research

Read More

We study a method to induce resonant transitions between antihydrogen ($bar{H}$) quantum states above a material surface in the gravitational field of the Earth. The method consists of applying a gradient of magnetic field, which is temporally oscillating with the frequency equal to a frequency of transition between gravitational states of antihydrogen. A corresponding resonant change in the spatial density of antihydrogen atoms could be measured as a function of the frequency of applied field. We estimate an accuracy of measuring antihydrogen gravitational states spacing and show how a value of the gravitational mass of the $bar{H}$ atom could be deduced from such a measurement. We also demonstrate that a method of induced transitions could be combined with a free-fall-time measurement in order to further improve the precision.
The ASACUSA collaboration at the Antiproton Decelerator of CERN aims at a precise measurement of the antihydrogen ground-state hyperfine structure as a test of the fundamental CPT symmetry. A beam of antihydrogen atoms is formed in a CUSP trap, undergoes Rabi-type spectroscopy and is detected downstream in a dedicated antihydrogen detector. In parallel measurements using a polarized hydrogen beam are being performed to commission the spectroscopy apparatus and to perform measurements of parameters of the Standard Model Extension (SME). The current status of antihydrogen spectroscopy is reviewed and progress of ASACUSA is presented.
Antihydrogen, the lightest atom consisting purely of antimatter, is an ideal laboratory to study the CPT symmetry by comparison to hydrogen. With respect to absolute precision, transitions within the ground-state hyperfine structure (GS-HFS) are most appealing by virtue of their small energy separation. ASACUSA proposed employing a beam of cold antihydrogen atoms in a Rabi-type experiment to determine the GS-HFS in a field-free region. Here we present a measurement of the zero-field hydrogen GS-HFS using the spectroscopy apparatus of ASACUSAs antihydrogen experiment. The measured value of $ u_mathrm{HF}$=$1~420~405~748.4(3.4)(1.6)~textrm{Hz}$ with a relative precision of $Delta$$ u_mathrm{HF}$/$ u_mathrm{HF}$=$2.7times10^{-9}$ constitutes the most precise determination of this quantity in a beam and verifies the developed spectroscopy methods for the antihydrogen HFS experiment to the ppb level. Together with the recently presented observation of antihydrogen atoms $2.7~textrm{m}$ downstream of the production region, the prerequisites for a measurement with antihydrogen are now available within the ASACUSA collaboration.
247 - R. Li , J. Lassen , Z. P. Zhong 2017
Multi-step laser resonance ionization spectroscopy of lutetium (Lu) has been performed at TRIUMFs off-line laser ion source test stand. The even-parity Rydberg series $6s^2nd$ $^2D_{3/2}$, $6s^2nd$ $^2D_{5/2}$ and $6s^2ns$ $^2S_{1/2}$ were observed converging to the 6s$^2$ ionization potential. The experimental results has been compared to previous work. 51 levels of Rydberg series $6s^2nd$ $^2D_{5/2}$ and 52 levels of Rydberg series $6s^2ns$ $^2S_{1/2}$ were reported new. Additionally six even-parity autoionization (AI) series converging to Lu ionic states $5d6s$ $^3D_1$ and $5d6s$ $^3D_2$ were observed. The level energies of these AI states were measured. The configurations of the AI states were assigned by relativistic multichannel theory (RMCT) within the framework of multichannel quantum defect theory (MQDT).
257 - R. Li , Y. Liu , M. Mostamand 2020
Photoionization spectra of Se have been studied by step-wise resonance laser ionization. The Rydberg series 4s$^2$4p$^3$($^4$S)np $^3$P$_{0,1,2}$ and 4s$^2$4p$^3$($^4$S)np $^5$P$_{1,2,3}$ were measured via different excitation schemes. Using the Rydberg series 4s$^2$4p$^3$($^4$S)np $^3$P$_2$ with n=15-33, the ionization potential of Se was determined with improved precision to 76658.15(2)$_{stat}$(4)$_{sys}$ cm$^{-1}$, which resolved the discrepancy in previous literatures. Autoionizing (AI) spectra between the IP and two neighboring converging limits of the Se ionic states 4s$^2$4p$^3$($^2$D$_{3/2}$) and 4s$^2$4p$^3$($^2$D$_{5/2}$) were obtained. In total eight AI Rydberg series have been observed, measured and assigned.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا