Do you want to publish a course? Click here

Enhancing Approximations for Regular Reachability Analysis

384   0   0.0 ( 0 )
 Added by Pierre-Cyrille Heam
 Publication date 2013
and research's language is English




Ask ChatGPT about the research

This paper introduces two mechanisms for computing over-approximations of sets of reachable states, with the aim of ensuring termination of state-space exploration. The first mechanism consists in over-approximating the automata representing reachable sets by merging some of their states with respect to simple syntactic criteria, or a combination of such criteria. The second approximation mechanism consists in manipulating an auxiliary automaton when applying a transducer representing the transition relation to an automaton encoding the initial states. In addition, for the second mechanism we propose a new approach to refine the approximations depending on a property of interest. The proposals are evaluated on examples of mutual exclusion protocols.



rate research

Read More

Petri nets, also known as vector addition systems, are a long established model of concurrency with extensive applications in modelling and analysis of hardware, software and database systems, as well as chemical, biological and business processes. The central algorithmic problem for Petri nets is reachability: whether from the given initial configuration there exists a sequence of valid execution steps that reaches the given final configuration. The complexity of the problem has remained unsettled since the 1960s, and it is one of the most prominent open questions in the theory of verification. Decidability was proved by Mayr in his seminal STOC 1981 work, and the currently best published upper bound is non-primitive recursive Ackermannian of Leroux and Schmitz from LICS 2019. We establish a non-elementary lower bound, i.e. that the reachability problem needs a tower of exponentials of time and space. Until this work, the best lower bound has been exponential space, due to Lipton in 1976. The new lower bound is a major breakthrough for several reasons. Firstly, it shows that the reachability problem is much harder than the coverability (i.e., state reachability) problem, which is also ubiquitous but has been known to be complete for exponential space since the late 1970s. Secondly, it implies that a plethora of problems from formal languages, logic, concurrent systems, process calculi and other areas, that are known to admit reductions from the Petri nets reachability problem, are also not elementary. Thirdly, it makes obsolete the currently best lower bounds for the reachability problems for two key extensions of Petri nets: with branching and with a pushdown stack.
286 - Ranko Lazic 2013
By adapting the iterative yardstick construction of Stockmeyer, we show that the reachability problem for vector addition systems with a stack does not have elementary complexity. As a corollary, the same lower bound holds for the satisfiability problem for a two-variable first-order logic on trees in which unbounded data may label only leaf nodes. Whether the two problems are decidable remains an open question.
Subzero automata is a class of tree automata whose acceptance condition can express probabilistic constraints. Our main result is that the problem of determining if a subzero automaton accepts some regular tree is decidable.
This paper presents algorithms for performing data-driven reachability analysis under temporal logic side information. In certain scenarios, the data-driven reachable sets of a robot can be prohibitively conservative due to the inherent noise in the robots historical measurement data. In the same scenarios, we often have side information about the robots expected motion (e.g., limits on how much a robot can move in a one-time step) that could be useful for further specifying the reachability analysis. In this work, we show that if we can model this side information using a signal temporal logic (STL) fragment, we can constrain the data-driven reachability analysis and safely limit the conservatism of the computed reachable sets. Moreover, we provide formal guarantees that, even after incorporating side information, the computed reachable sets still properly over-approximate the robots future states. Lastly, we empirically validate the practicality of the over-approximation by computing constrained, data-driven reachable sets for the Small-Vehicles-for-Autonomy (SVEA) hardware platform in two driving scenarios.
The probabilistic bisimilarity distance of Deng et al. has been proposed as a robust quantitative generalization of Segala and Lynchs probabilistic bisimilarity for probabilistic automata. In this paper, we present a characterization of the bisimilarity distance as the solution of a simple stochastic game. The characterization gives us an algorithm to compute the distances by applying Condons simple policy iteration on these games. The correctness of Condons approach, however, relies on the assumption that the games are stopping. Our games may be non-stopping in general, yet we are able to prove termination for this extended class of games. Already other algorithms have been proposed in the literature to compute these distances, with complexity in $textbf{UP} cap textbf{coUP}$ and textbf{PPAD}. Despite the theoretical relevance, these algorithms are inefficient in practice. To the best of our knowledge, our algorithm is the first practical solution. The characterization of the probabilistic bisimilarity distance mentioned above crucially uses a dual presentation of the Hausdorff distance due to Memoli. As an additional contribution, in this paper we show that Memolis result can be used also to prove that the bisimilarity distance bounds the difference in the maximal (or minimal) probability of two states to satisfying arbitrary $omega$-regular properties, expressed, eg., as LTL formulas.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا