Do you want to publish a course? Click here

Surveying the quantum group symmetries of integrable open spin chains

68   0   0.0 ( 0 )
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

Using anisotropic R-matrices associated with affine Lie algebras $hat g$ (specifically, $A_{2n}^{(2)}, A_{2n-1}^{(2)}, B_n^{(1)}, C_n^{(1)}, D_n^{(1)}$) and suitable corresponding K-matrices, we construct families of integrable open quantum spin chains of finite length, whose transfer matrices are invariant under the quantum group corresponding to removing one node from the Dynkin diagram of $hat g$. We show that these transfer matrices also have a duality symmetry (for the cases $C_n^{(1)}$ and $D_n^{(1)}$) and additional $Z_2$ symmetries that map complex representations to their conjugates (for the cases $A_{2n-1}^{(2)}, B_n^{(1)}, D_n^{(1)}$). A key simplification is achieved by working in a certain unitary gauge, in which only the unbroken symmetry generators appear. The proofs of these symmetries rely on some new properties of the R-matrices. We use these symmetries to explain the degeneracies of the transfer matrices.



rate research

Read More

134 - Nick G. Jones , Noah Linden 2021
We construct new families of spin chain Hamiltonians that are local, integrable and translationally invariant. To do so, we make use of the Clifford group that arises in quantum information theory. We consider translation invariant Clifford group transformations that can be described by matrix product operators (MPOs). We classify the translation invariant Clifford group transformations that consist of a shift operator and an MPO of bond dimension two -- this includes transformations that preserve locality of all Hamiltonians; as well as those that lead to non-local images of particular operators but nevertheless preserve locality of certain Hamiltonians. We characterise the translation invariant Clifford group transformations that take single-site Pauli operators to local operators on at most five sites -- examples of Quantum Cellular Automata -- leading to a discrete family of Hamiltonians that are equivalent to the canonical XXZ model under such transformations. For spin chains solvable by algebraic Bethe Ansatz, we explain how conjugating by a matrix product operator affects the underlying integrable structure. This allows us to relate our results to the usual classifications of integrable Hamiltonians. We also treat the case of spin chains solvable by free fermions.
133 - Taro Kimura , Rui-Dong Zhu 2020
In this article, we extend the work of arXiv:0901.4744 to a Bethe/Gauge correspondence between 2d (or resp. 3d) SO/Sp gauge theories and open XXX (resp. XXZ) spin chains with diagonal boundary conditions. The case of linear quiver gauge theories is also considered.
152 - N. Beisert , F. Loebbert 2008
We construct the most general perturbatively long-range integrable spin chain with spins transforming in the fundamental representation of gl(N) and open boundary conditions. In addition to the previously determined bulk moduli we find a new set of parameters determining the reflection phase shift. We also consider finite-size contributions and comment on their determination.
We consider discrete analogues of two well-known open problems regarding invariant measures for dispersive PDE, namely, the invariance of the Gibbs measure for the continuum (classical) Heisenberg model and the invariance of white noise under focusing cubic NLS. These continuum models are completely integrable and connected by the Hasimoto transform; correspondingly, we focus our attention on discretizations that are also completely integrable and also connected by a discrete Hasimoto transform. We consider these models on the infinite lattice $mathbb Z$. Concretely, for a completely integrable variant of the classical Heisenberg spin chain model (introduced independently by Haldane, Ishimori, and Sklyanin) we prove the existence and uniqueness of solutions for initial data following a Gibbs law (which we show is unique) and show that the Gibbs measure is preserved under these dynamics. In the setting of the focusing Ablowitz--Ladik system, we prove invariance of a measure that we will show is the appropriate discrete analogue of white noise. We also include a thorough discussion of the Poisson geometry associated to the discrete Hasimoto transform introduced by Ishimori that connects the two models studied in this article.
Two branches of integrable open quantum-group invariant $D_{n+1}^{(2)}$ quantum spin chains are known. For one branch (epsilon=0), a complete Bethe ansatz solution has been proposed. However, the other branch (epsilon=1) has so far resisted solution. In an effort to address this problem, we consider here the simplest case n=1. We propose a Bethe ansatz solution, which however is not complete, as it describes only the transfer-matrix eigenvalues with odd degeneracy. We also consider a proposal for the missing eigenvalues.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا