Do you want to publish a course? Click here

Precision ephemerides for gravitational-wave searches: I. Sco X-1

157   0   0.0 ( 0 )
 Added by Duncan K. Galloway
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

Rapidly-rotating neutron stars are the only candidates for persistent high-frequency gravitational wave emission, for which a targeted search can be performed based on the spin period measured from electromagnetic (e.g. radio and X-ray) observations. The principal factor determining the sensitivity of such searches is the measurement precision of the physical parameters of the system. Neutron stars in X-ray binaries present additional computational demands for searches due to the uncertainty in the binary parameters. We present the results of a pilot study with the goal of improving the measurement precision of binary orbital parameters for candidate gravitational wave sources. We observed the optical counterpart of Sco X-1 in 2011 June with the William Herschel Telescope, and also made use of Very Large Telescope observations in 2011, to provide an additional epoch of radial-velocity measurements to earlier measurements in 1999. From a circular orbit fit to the combined dataset, we obtained an improvement of a factor of two in the orbital period precision, and a factor of 2.5 in the epoch of inferior conjunction $T_0$. While the new orbital period is consistent with the previous value of Gottllieb et al. (1975), the new $T_0$ (and the amplitude of variation of the Bowen line velocities) exhibited a significant shift, which we attribute to variations in the emission geometry with epoch. We propagate the uncertainties on these parameters through to the expected Advanced LIGO & VIRGO detector network observation epochs, and quantify the improvement obtained with additional optical observations.



rate research

Read More

Accreting neutron stars in low-mass X-ray binaries (LMXBs) are candidate high-frequency persistent gravitational wave sources. These may be detectable with next generation interferometers such as Advanced LIGO/VIRGO within this decade. However, the search sensitivity is expected to be limited principally by the uncertainty in the binary system parameters. We combine new optical spectroscopy of Cyg X-2 obtained with the Liverpool Telescope (LT) with available historical radial velocity data, which gives us improved orbital parameter uncertainties based on a 44-year baseline. We obtained an improvement of a factor of 2.6 in the orbital period precision and a factor of 2 in the epoch of inferior conjunction T_0. The updated orbital parameters imply a mass function of 0.65 +/- 0.01 M_sun, leading to a primary mass (M_1) of 1.67 +/- 0.22 M_sun (for i=62.5 +/- 4 deg). In addition, we estimate the likely orbital parameter precision through to the expected Advanced LIGO and VIRGO detector observing period and quantify the corresponding improvement in sensitivity via the required number of templates.
The regularity of pulsar emissions becomes apparent once we reference the pulses times of arrivals to the inertial rest frame of the solar system. It follows that errors in the determination of Earths position with respect to the solar-system barycenter can appear as a time-correlated bias in pulsar-timing residual time series, affecting the searches for low-frequency gravitational waves performed with pulsar timing arrays. Indeed, recent array datasets yield different gravitational-wave background upper limits and detection statistics when analyzed with different solar-system ephemerides. Crucially, the ephemerides do not generally provide usable error representations. In this article we describe the motivation, construction, and application of a physical model of solar-system ephemeris uncertainties, which focuses on the degrees of freedom (Jupiters orbital elements) most relevant to gravitational-wave searches with pulsar timing arrays. This model, BayesEphem, was used to derive ephemeris-robust results in NANOGravs 11-yr stochastic-background search, and it provides a foundation for future searches by NANOGrav and other consortia. The analysis and simulations reported here suggest that ephemeris modeling reduces the gravitational-wave sensitivity of the 11-yr dataset; and that this degeneracy will vanish with improved ephemerides and with the longer pulsar timing datasets that will become available in the near future.
The large sky localization regions offered by the gravitational-wave interferometers require efficient follow-up of the many counterpart candidates identified by the wide field-of-view telescopes. Given the restricted telescope time, the creation of prioritized lists of the many identified candidates becomes mandatory. Towards this end, we use text{astrorapid}, a multi-band photometric lightcurve classifier, to differentiate between kilonovae, supernovae, and other possible transients. We demonstrate our method on the photometric observations of real events. In addtion, the classification performance is tested on simulated lightcurves, both ideally and realistically sampled. We show that after only a few days of observations of an astronomical object, it is possible to rule out candidates as supernovae and other known transients.
Neutron stars in low mass X-ray binaries are hypothesised to emit continuous gravitational waves that may be detectable by ground-based observatories. The torque balance model predicts that a higher accretion rate produces larger-amplitude gravitational waves, hence low mass X-ray binaries with high X-ray flux are promising targets for gravitational wave searches. The detection of X-ray pulsations would identify the spin frequency of these neutron stars, and thereby improve the sensitivity of continuous gravitational-wave searches by reducing the volume of the search parameter space. We perform a semi-coherent search for pulsations in the two low mass X-ray binaries Scorpius X-1 and Cygnus X-2 using X-ray data from the textit{ Rossi X-ray Timing Explorer} Proportional Counter Array. We find no clear evidence for pulsations, and obtain upper limits (at $90%$ confidence) on the fractional pulse amplitude, with the most stringent being $0.034%$ for Scorpius X-1 and $0.23%$ for Cygnus X-2. These upper limits improve upon those of Vaughan et al. (1994) by factors of $sim 8.2$ and $sim 1.6$ respectively.
We performed a search for event bursts in the XMASS-I detector associated with 11 gravitational-wave events detected during LIGO/Virgos O1 and O2 periods. Simple and loose cuts were applied to the data collected in the full 832 kg xenon volume around the detection time of each gravitational-wave event. The data were divided into four energy regions ranging from keV to MeV. Without assuming any particular burst models, we looked for event bursts in sliding windows with various time width from 0.02 to 10 s. The search was conducted in a time window between $-$400 and $+$10,000 s from each gravitational-wave event. For the binary neutron star merger GW170817, no significant event burst was observed in the XMASS-I detector and we set 90% confidence level upper limits on neutrino fluence for the sum of all the neutrino flavors via coherent elastic neutrino-nucleus scattering. The obtained upper limit was (1.3-2.1)$times 10^{11}$ cm$^{-2}$ under the assumption of a Fermi-Dirac spectrum with average neutrino energy of 20 MeV. The neutrino fluence limits for mono-energetic neutrinos in the energy range between 14 and 100 MeV were also calculated. Among the other 10 gravitational wave events detected as the binary black hole mergers, a burst candidate with a 3.0$sigma$ significance was found at 1801.95-1803.95 s in the analysis for GW151012. However, no significant deviation from the background in the reconstructed energy and position distributions was found. Considering the additional look-elsewhere effect of analyzing the 11 GW events, the significance of finding such a burst candidate associated with any of them is 2.1$sigma$.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا