Do you want to publish a course? Click here

Search for event bursts in XMASS-I associated with gravitational-wave events

128   0   0.0 ( 0 )
 Added by Xmass Publications
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We performed a search for event bursts in the XMASS-I detector associated with 11 gravitational-wave events detected during LIGO/Virgos O1 and O2 periods. Simple and loose cuts were applied to the data collected in the full 832 kg xenon volume around the detection time of each gravitational-wave event. The data were divided into four energy regions ranging from keV to MeV. Without assuming any particular burst models, we looked for event bursts in sliding windows with various time width from 0.02 to 10 s. The search was conducted in a time window between $-$400 and $+$10,000 s from each gravitational-wave event. For the binary neutron star merger GW170817, no significant event burst was observed in the XMASS-I detector and we set 90% confidence level upper limits on neutrino fluence for the sum of all the neutrino flavors via coherent elastic neutrino-nucleus scattering. The obtained upper limit was (1.3-2.1)$times 10^{11}$ cm$^{-2}$ under the assumption of a Fermi-Dirac spectrum with average neutrino energy of 20 MeV. The neutrino fluence limits for mono-energetic neutrinos in the energy range between 14 and 100 MeV were also calculated. Among the other 10 gravitational wave events detected as the binary black hole mergers, a burst candidate with a 3.0$sigma$ significance was found at 1801.95-1803.95 s in the analysis for GW151012. However, no significant deviation from the background in the reconstructed energy and position distributions was found. Considering the additional look-elsewhere effect of analyzing the 11 GW events, the significance of finding such a burst candidate associated with any of them is 2.1$sigma$.



rate research

Read More

We present a search for low energy antineutrino events coincident with the gravitational wave events GW150914 and GW151226, and the candidate event LVT151012 using KamLAND, a kiloton-scale antineutrino detector. We find no inverse beta-decay neutrino events within $pm 500$ seconds of either gravitational wave signal. This non-detection is used to constrain the electron antineutrino fluence and the luminosity of the astrophysical sources.
The Super-Kamiokande detector can be used to search for neutrinos in time coincidence with gravitational waves detected by the LIGO-Virgo Collaboration (LVC). Both low-energy ($7-100$ MeV) and high-energy ($0.1-10^5$ GeV) samples were analyzed in order to cover a very wide neutrino spectrum. Follow-ups of 36 (out of 39) gravitational waves reported in the GWTC-2 catalog were examined; no significant excess above the background was observed, with 10 (24) observed neutrinos compared with 4.8 (25.0) expected events in the high-energy (low-energy) samples. A statistical approach was used to compute the significance of potential coincidences. For each observation, p-values were estimated using neutrino direction and LVC sky map ; the most significant event (GW190602_175927) is associated with a post-trial p-value of $7.8%$ ($1.4sigma$). Additionally, flux limits were computed independently for each sample and by combining the samples. The energy emitted as neutrinos by the identified gravitational wave sources was constrained, both for given flavors and for all-flavors assuming equipartition between the different flavors, independently for each trigger and by combining sources of the same nature.
152 - S. Abe , S. Asami , A. Gando 2020
We present the results of a search for MeV-scale electron antineutrino events in KamLAND in coincident with the 60 gravitational wave events/candidates reported by the LIGO/Virgo collaboration during their second and third observing runs. We find no significant coincident signals within a $pm$ 500 s timing window from each gravitational wave and present 90% C.L. upper limits on the electron antineutrino fluence between $10^{8}$-$10^{13},{mathrm cm^2}$ for neutrino energies in the energy range of 1.8-111 MeV.
94 - K. Abe , K. Haga , Y. Hayato 2016
We report the results from a search in Super-Kamiokande for neutrino signals coincident with the first detected gravitational wave events, GW150914 and GW151226, using a neutrino energy range from 3.5 MeV to 100 PeV. We searched for coincident neutrino events within a time window of $pm$500 seconds around the gravitational wave detection time. Four neutrino candidates are found for GW150914 and no candidates are found for GW151226. The remaining neutrino candidates are consistent with the expected background events. We calculated the 90% confidence level upper limits on the combined neutrino fluence for both gravitational wave events, which depends on event energy and topologies. Considering the upward going muon data set (1.6 GeV - 100 PeV) the neutrino fluence limit for each gravitational wave event is 14 - 37 (19 - 50) cm$^{-2}$ for muon neutrinos (muon antineutrinos), depending on the zenith angle of the event. In the other data sets, the combined fluence limits for both gravitational wave events range from 2.4$times 10^{4}$ to 7.0$times 10^{9}$ cm$^{-2}$.
Using data of the Baksan Underground Scintillation Telescope (BUST) we have made a search for muon neutrinos and antineutrinos with energies above 1 GeV coinciding with the gravitational wave event GW170817 that was recorded on August 17, 2017 by the Advanced LIGO and Advanced Virgo observatories. This is a first detection of the new type of events occurring as a result of a merger of two neutron stars in a binary system. A short gamma-ray burst GRB170817A accompanying this event is an evidence of particle acceleration in the source whose precise position was determined by detection of the subsequent optical signal. No neutrino signals were found with the BUST in the interval $pm 500$ s around the moment of the gravitational wave event GW170817, as well as during the next 14 days. The upper limits on integral fluxes of muon neutrino and antineutrino from the source are derived.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا