Do you want to publish a course? Click here

Probing Majorana bound states via counting statistics of a single electron transistor

114   0   0.0 ( 0 )
 Added by Zeng-Zhao Li
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

We propose an approach for probing Majorana bound states (MBSs) in a nanowire via counting statistics of a nearby charge detector in the form of a single-electron transistor (SET). We consider the impacts on the counting statistics by both the local coupling between the detector and an adjacent MBS at one end of a nanowire and the nonlocal coupling to the MBS at the other end. We show that the Fano factor and the skewness of the SET current are minimized for a symmetric SET configuration in the absence of the MBSs or when coupled to a fermionic state. However, the minimum points of operation are shifted appreciably in the presence of the MBSs to asymmetric SET configurations with a higher tunnel rate at the drain than at the source. This feature persists even when varying the nonlocal coupling and the pairing energy between the two MBSs. We expect that these MBS-induced shifts can be measured experimentally with available technologies and can serve as important signatures of the MBSs.



rate research

Read More

Quantum technologies involving qubit measurements based on electronic interferometers rely critically on accurate single-particle emission. However, achieving precisely timed operations requires exquisite control of the single-particle sources in the time domain. Here, we demonstrate accurate control of the emission time statistics of a dynamic single-electron transistor by measuring the waiting times between emitted electrons. By ramping up the modulation frequency, we controllably drive the system through a crossover from adiabatic to nonadiabatic dynamics, which we visualize by measuring the temporal fluctuations at the single-electron level and explain using detailed theory. Our work paves the way for future technologies based on the ability to control, transmit, and detect single quanta of charge or heat in the form of electrons, photons, or phonons.
118 - H. Soller , A. Komnik 2014
We analyse the full counting statistics of charge transfer through a Majorana bound state coupled to an STM tip and show how they can be used for an unambiguous identification of the bound state at the end of the wire. Additionally, we show how to generate Majorana bound states in a simple setup involving a ferromagnetic wire on a superconducting substrate.
The interplay between spin and charge in solids is currently among the most discussed topics in condensed matter physics. Such interplay gives rise to magneto-electric coupling, which in the case of solids was named magneto-electric effect, as predicted by Curie on the basis of symmetry considerations. This effect enables the manipulation of magnetization using electrical field or, conversely, the manipulation of electrical polarization by magnetic field. The latter is known as the magnetocapacitance effect. Here, we show that non-equilibrium spin accumulation can induce tunnel magnetocapacitance through the formation of a tiny charge dipole. This dipole can effectively give rise to an additional serial capacitance, which represents an extra charging energy that the tunneling electrons would encounter. In the sequential tunneling regime, this extra energy can be understood as the energy required for a single spin to flip. A ferromagnetic single-electron-transistor with tunable magnetic configuration is utilized to demonstrate the proposed mechanism. It is found that the extra threshold energy is experienced only by electrons entering the islands, bringing about asymmetry in the measured Coulomb diamond. This asymmetry is an unambiguous evidence of spin accumulation induced tunnel magnetocapacitance, and the measured magnetocapacitance value is as high as 40%.
We consider a biased Normal-Superconducting junction with various types of superconductivity. Depending on the class of superconductivity, a Majorana bound state may appear at the interface. We show that this has important consequences on the distribution of waiting times of electrons flowing out of such an interface. Therefore, the waiting time distribution is shown to be a clear fingerprint of Majorana bound state physics and may be considered as an experimental signature of its presence.
The ability to apply GHz frequencies to control the quantum state of a single $P$ atom is an essential requirement for the fast gate pulsing needed for qubit control in donor based silicon quantum computation. Here we demonstrate this with nanosecond accuracy in an all epitaxial single atom transistor by applying excitation signals at frequencies up to $approx$ 13 GHz to heavily phosphorous doped silicon leads. These measurements allow the differentiation between the excited states of the single atom and the density of states in the one dimensional leads. Our pulse spectroscopy experiments confirm the presence of an excited state at an energy $approx$ 9 meV consistent with the first excited state of a single $P$ donor in silicon. The relaxation rate of this first excited state to ground is estimated to be larger than 2.5 GHz, consistent with theoretical predictions. These results represent a systematic investigation of how an atomically precise single atom transistor device behaves under rf excitations.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا