Do you want to publish a course? Click here

Probing Spin Accumulation induced Magnetocapacitance in a Single Electron Transistor

102   0   0.0 ( 0 )
 Added by Teik-Hui Lee
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

The interplay between spin and charge in solids is currently among the most discussed topics in condensed matter physics. Such interplay gives rise to magneto-electric coupling, which in the case of solids was named magneto-electric effect, as predicted by Curie on the basis of symmetry considerations. This effect enables the manipulation of magnetization using electrical field or, conversely, the manipulation of electrical polarization by magnetic field. The latter is known as the magnetocapacitance effect. Here, we show that non-equilibrium spin accumulation can induce tunnel magnetocapacitance through the formation of a tiny charge dipole. This dipole can effectively give rise to an additional serial capacitance, which represents an extra charging energy that the tunneling electrons would encounter. In the sequential tunneling regime, this extra energy can be understood as the energy required for a single spin to flip. A ferromagnetic single-electron-transistor with tunable magnetic configuration is utilized to demonstrate the proposed mechanism. It is found that the extra threshold energy is experienced only by electrons entering the islands, bringing about asymmetry in the measured Coulomb diamond. This asymmetry is an unambiguous evidence of spin accumulation induced tunnel magnetocapacitance, and the measured magnetocapacitance value is as high as 40%.



rate research

Read More

Single dopants in semiconductor nanostructures have been studied in great details recently as they are good candidates for quantum bits, provided they are coupled to a detector. Here we report coupling of a single As donor atom to a single-electron transistor (SET) in a silicon nanowire field-effect transistor. Both capacitive and tunnel coupling are achieved, the latter resulting in a dramatic increase of the conductance through the SET, by up to one order of magnitude. The experimental results are well explained by the rate equations theory developed in parallel with the experiment.
We investigate a silicon single-electron transistor (SET) in a metal-oxide-semiconductor (MOS) structure by applying a magnetic field perpendicular to the sample surface. The quantum dot is defined electrostatically in a point contact channel and by the potential barriers from negatively charged interface traps. The magnetic field dependence of the excitation spectrum is primarily driven by the Zeeman effect. In the two-electron singlet-triplet (ST) transition, electron-electron Coulomb interaction plays a significant role. The evolution of Coulomb blockade peaks with magnetic field B is also owing to the Zeeman splitting with no obvious orbital effect up to 9 T. The filling pattern shows an alternate spin-up-spin-down sequence. The amplitude spectroscopy allows for the observation of the spin blockade effect, where the two-electron system forms a singlet state at low fields, and the spin polarized injection from the lead reduces the tunneling conductance by a factor of 8. At a higher magnetic field, due to the ST transition, the spin blockade effect is lifted and the conductance is fully recovered.
114 - Zeng-Zhao Li , Chi-Hang Lam , 2013
We propose an approach for probing Majorana bound states (MBSs) in a nanowire via counting statistics of a nearby charge detector in the form of a single-electron transistor (SET). We consider the impacts on the counting statistics by both the local coupling between the detector and an adjacent MBS at one end of a nanowire and the nonlocal coupling to the MBS at the other end. We show that the Fano factor and the skewness of the SET current are minimized for a symmetric SET configuration in the absence of the MBSs or when coupled to a fermionic state. However, the minimum points of operation are shifted appreciably in the presence of the MBSs to asymmetric SET configurations with a higher tunnel rate at the drain than at the source. This feature persists even when varying the nonlocal coupling and the pairing energy between the two MBSs. We expect that these MBS-induced shifts can be measured experimentally with available technologies and can serve as important signatures of the MBSs.
Starting from the Kubo formula for conductance, we calculate the frequency-dependent response of a single-electron transistor (SET) driven by an ac signal. Treating tunneling processes within the lowest order approximation, valid for a wide range of parameters, we discover a finite reactive part even under Coulomb blockade due to virtual processes. At low frequencies this can be described by an effective capacitance. This effect can be probed with microwave reflection measurements in radio-frequency (rf) SET provided that the capacitance of the surroundings does not completely mask that of the SET.
We perform direct thermovoltage measurements in a single-electron transistor, using on-chip local thermometers, both in the linear and non-linear regimes. Using a model which accounts for co-tunneling, we find excellent agreement with the experimental data with no free parameters even when the temperature difference is larger than the average temperature (far-from-linear regime). This allows us to confirm the sensitivity of the thermovoltage on co-tunneling and to find that in the non-linear regime the temperature of the metallic island is a crucial parameter. Surprisingly, the metallic island tends to overheat even at zero net charge current, resulting in a reduction of the thermovoltage.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا