Do you want to publish a course? Click here

Controlled emission time statistics of a dynamic single-electron transistor

108   0   0.0 ( 0 )
 Added by Christian Flindt
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Quantum technologies involving qubit measurements based on electronic interferometers rely critically on accurate single-particle emission. However, achieving precisely timed operations requires exquisite control of the single-particle sources in the time domain. Here, we demonstrate accurate control of the emission time statistics of a dynamic single-electron transistor by measuring the waiting times between emitted electrons. By ramping up the modulation frequency, we controllably drive the system through a crossover from adiabatic to nonadiabatic dynamics, which we visualize by measuring the temporal fluctuations at the single-electron level and explain using detailed theory. Our work paves the way for future technologies based on the ability to control, transmit, and detect single quanta of charge or heat in the form of electrons, photons, or phonons.



rate research

Read More

113 - Zeng-Zhao Li , Chi-Hang Lam , 2013
We propose an approach for probing Majorana bound states (MBSs) in a nanowire via counting statistics of a nearby charge detector in the form of a single-electron transistor (SET). We consider the impacts on the counting statistics by both the local coupling between the detector and an adjacent MBS at one end of a nanowire and the nonlocal coupling to the MBS at the other end. We show that the Fano factor and the skewness of the SET current are minimized for a symmetric SET configuration in the absence of the MBSs or when coupled to a fermionic state. However, the minimum points of operation are shifted appreciably in the presence of the MBSs to asymmetric SET configurations with a higher tunnel rate at the drain than at the source. This feature persists even when varying the nonlocal coupling and the pairing energy between the two MBSs. We expect that these MBS-induced shifts can be measured experimentally with available technologies and can serve as important signatures of the MBSs.
We report on combined measurements of heat and charge transport through a single-electron transistor. The device acts as a heat switch actuated by the voltage applied on the gate. The Wiedemann-Franz law for the ratio of heat and charge conductances is found to be systematically violated away from the charge degeneracy points. The observed deviation agrees well with the theoretical expectation. With large temperature drop between the source and drain, the heat current away from degeneracy deviates from the standard quadratic dependence in the two temperatures.
104 - M. Turek , J. Siewert , K. Richter 2005
We present a linear-response theory for the thermopower of a single-electron transistor consisting of a superconducting island weakly coupled to two normal-conducting leads (NSN SET). The thermopower shows oscillations with the same periodicity as the conductance and is rather sensitive to the size of the superconducting gap. In particular, the previously studied sawtooth-like shape of the thermopower for a normal-conducting single-electron device is qualitatively changed even for small gap energies.
Single dopants in semiconductor nanostructures have been studied in great details recently as they are good candidates for quantum bits, provided they are coupled to a detector. Here we report coupling of a single As donor atom to a single-electron transistor (SET) in a silicon nanowire field-effect transistor. Both capacitive and tunnel coupling are achieved, the latter resulting in a dramatic increase of the conductance through the SET, by up to one order of magnitude. The experimental results are well explained by the rate equations theory developed in parallel with the experiment.
Starting from the Kubo formula for conductance, we calculate the frequency-dependent response of a single-electron transistor (SET) driven by an ac signal. Treating tunneling processes within the lowest order approximation, valid for a wide range of parameters, we discover a finite reactive part even under Coulomb blockade due to virtual processes. At low frequencies this can be described by an effective capacitance. This effect can be probed with microwave reflection measurements in radio-frequency (rf) SET provided that the capacitance of the surroundings does not completely mask that of the SET.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا