Do you want to publish a course? Click here

Investigation of New Lead- free (1-x)BaTiO3-xBi(Mg1/2Zr1/2)O3 Solid Solution with Morphotropic Phase Boundary

145   0   0.0 ( 0 )
 Added by Rishikesh Pandey
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report here the structure and dielectric studies on a new lead free (1-x)BaTiO3-xBi(Mg1/2Zr1/2)O3 solid solution to explore the morphotropic phase boundary. The powder x-ray diffraction studies on (1-x)BaTiO3-xBi(Mg1/2Zr1/2)O3 solid solution suggests that structure is tetragonal (P4mm) for the composition with x=0.05 and cubic for the composition with x=0.30 and 0.40. Morphotropic phase boundary is observed in the composition range 0.10<x<0.30, where phase coexistence is observed and composition dependence of room temperature permittivity shows a peak. High temperature dielectric measurement for the composition with x=0.20 exhibits diffuse phase transition having peak temperature around ~ 396 K at 10 kHz. The diffuseness parameter ({gamma}) was obtained to be 1.68 for composition with x=0.20.



rate research

Read More

170 - C.-J. Cheng , S.H. Lim , S. Fujino 2008
We investigate the microstructural evolution in a ferroelectric to antiferroelectric phase transition at the morphotropic phase boundary in the Bi(1-x)SmxFeO3 system. Continuous Sm3+ substitution on the A-site induces short-range anti-parallel cation displacements as verified by the appearance of localized 1/4(110) weak spots in selected area electron diffraction patterns for 0.1<x<0.14 samples, and thus onset of antiferroelectricity. Kinetic Monte Carlo simulations confirm that increasing the strength of the anti-parallel interactions (i.e. increasing x) induces a ferroelectric to antiferroelectric transition. For 0.14<x<0.2 antiphase oxygen octahedra tilts induce complete antiferroelectricity.
In this work, we address the issue of peaking of piezoelectric response at a particular composition in the morphotropic phase boundary (MPB) region of (Pb0.940Sr0.06)(ZrxTi1-x)O3 (PSZT) piezoelectric ceramics. We present results of synchrotron x-ray powder diffraction, dielectric, piezoelectric and sound velocity studies to critically examine the applicability of various models for the peaking of physical properties. It is shown that the models based on the concepts of phase coexistence, polarization rotation due to monoclinic structure, tricritical point and temperature dependent softening of elastic modulus may enhance the piezoelectric response in the MPB region in general but cannot explain its peaking at a specific composition. Our results reveal that the high value of piezoelectric response for the MPB compositions in PSZT at x=0.530 is due to the softening of the elastic modulus as a function of composition. The softening of elastic modulus facilitates the generation of large piezoelectric strain and polarization on approaching the MPB composition of x=0.530. This new finding based on the softening of elastic modulus may pave the way forward for discovering/designing new lead-free environmentally friendly piezoelectric materials and revolutionize the field of piezoelectric ceramics.
We report on the discovery of a lead-free morphotropic phase boundary in Sm doped BiFeO3 with a simple perovskite structure using the combinatorial thin film strategy. The boundary is a rhombohedral to pseudo-orthorhombic structural transition which exhibits a ferroelectric (FE) to antiferroelectric (AFE) transition at approximately Bi0.86Sm0.14FeO3 with dielectric constant and out-of-plane piezoelectric coefficient comparable to those of epitaxial (001) oriented Pb(Zr,Ti)O3 (PZT) thin films at the MPB. The discovered composition may be a strong candidate of a Pb-free piezoelectric replacement of PZT.
We report neutron inelastic scattering on single crystal 0.68Pb(Mg1/3Nb2/3O3)-0.32PbTiO3 (PMN-0.32PT), a relaxor ferroelectric material that lies within the compositional range of the morphotropic phase boundary (MPB). Data were obtained between 100 K and 600 K under zero and non-zero electric field applied along the cubic [001] direction. The lowest energy, zone-center, transverse optic phonon is strongly damped and softens slowly at high temperature; however the square of the soft mode energy begins to increase linearly with temperature as in a conventional ferroelectric, which we term the soft mode recovery, upon cooling into the tetragonal phase at TC. Our data show that the soft mode in PMN-0.32PT behaves almost identically to that in pure PMN, exhibiting the same temperature dependence and recovery temperature even though PMN exhibits no well-defined structural transition (no TC). The temperature dependence of the soft mode in PMN-0.32PT is also similar to that in PMN-0.60PT; however in PMN-0.60PT the recovery temperature equals TC. These results suggest that the temperature dependence and the energy scale of the soft mode dynamics in PMN-xPT are independent of concentration on the Ti-poor side of the MPB, but scale with TC for Ti-rich compositions. Thus the MPB may be defined in lattice dynamical terms as the concentration where TC first matches the recovery temperature of the soft mode. High-resolution x-ray studies show that the cubic-to-ferroelectric phase boundary shifts to higher temperatures by an abnormal amount within the MPB region in the presence of an electric field. This suggests that an unusual instability exists within the apparently cubic phase at the MPB.
The temperature dependence of elastic, dielectric, and piezoelectric properties of (65-x)Pb(Mg1/3Nb2/3)O3-xBaTiO335-PbTiO3 ceramics with x=0, 1, 2, 3, and 4 was investigated. Compound with x=2 was found to exhibit a large piezoelectric response (d31=-170 pC/N, d33=530 pC/N at 300 K). Particularly, its d31 value was nearly a constant over a temperature range from 185 to 360 K. A broad ferroelectric phase transition tuned by BaTiO3 doping was deduced from the dielectric constant, elastic compliance constant and Raman spectra. The temperature-stable piezoelectric response was attributed to the counter-balance of contributions from the dielectric and elastic responses.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا