Do you want to publish a course? Click here

Low Background Materials and Assay - A Supplement to the Cosmic Frontier CF1 Summary

506   0   0.0 ( 0 )
 Added by John Orrell
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

This White Paper provides a supplement to the Snowmass Summary from CF1 (Cosmic Frontier WIMP Direct Detection). It was largely prepared during the August 2013 Community Planning Meeting and relies on information gathered from the larger dark matter community. It is a more detailed answer to the CF1 Charge: Identify the common infrastructure required to meet the scientific and technical goals of dark matter direct detection. The community as a whole recognizes that sensitive searches for WIMPs require identification, quantification, and procurement of radiopure materials. The lack of sufficient resources in this area is a major project risk for future experiments and can limit scientific reach



rate research

Read More

As part of the Snowmass process, the Cosmic Frontier WIMP Direct Detection subgroup (CF1) has drawn on input from the Cosmic Frontier and the broader Particle Physics community to produce this document. The charge to CF1 was (a) to summarize the current status and projected sensitivity of WIMP direct detection experiments worldwide, (b) motivate WIMP dark matter searches over a broad parameter space by examining a spectrum of WIMP models, (c) establish a community consensus on the type of experimental program required to explore that parameter space, and (d) identify the common infrastructure required to practically meet those goals.
NEWAGE is a direction-sensitive dark matter search using a low-pressure gaseous time projection chamber. A low alpha-ray emission rate micro pixel chamber had been developed in order to reduce background for dark matter search. We conducted the dark matter search at the Kamioka Observatory in 2018. The total live time was 107.6 days corresponding to an exposure of 1.1 kg${cdot}$days. Two events remained in the energy region of 50-60 keV which was consistent with 2.5 events of the expected background. A directional analysis was carried out and no significant forward-backward asymmetry derived from the WIMP-nucleus elastic scatterings was found. Thus a 90% confidence level upper limit on Spin-Dependent WIMP-proton cross section of 50 pb for a WIMP mass of 100 GeV/c2 was derived. This limit is the most stringent yet obtained from direction-sensitive dark matter search experiments.
Exposure of highly deuterated materials to a low-energy (nom. 2 MeV) photon beam resulted in nuclear activity of both the parent metals of hafnium and erbium and a witness material (molybdenum) mixed with the reactants. Gamma spectral analysis of all deuterated materials, ErD2.8-C36D74-Mo and HfD2-C36D74-Mo, showed that nuclear processes had occurred as shown by unique gamma signatures. For the deuterated erbium specimens, posttest gamma spectra showed evidence of radioisotopes of erbium (163Er and 171Er) and of molybdenum (99Mo and 101Mo) and by beta decay, technetium (99mTc and 101Tc). For the deuterated hafnium specimens, posttest gamma spectra showed evidence of radioisotopes of hafnium (180mHf and 181Hf) and molybdenum (99Mo and 101Mo), and by beta decay, technetium (99mTc and 101Tc). In contrast, when either the hydrogenated or non-gas-loaded erbium or hafnium materials were exposed to the gamma flux, the gamma spectra revealed no new isotopes. Neutron activation materials showed evidence of thermal and epithermal neutrons. CR-39 solid-state nuclear track detectors showed evidence of fast neutrons with energies between 1.4 and 2.5 MeV and several instances of triple tracks, indicating greater than 10 MeV neutrons. Further study is required to determine the mechanism causing the nuclear activity
As part of the Snowmass process, the Cosmic Frontier Indirect-Detection subgroup (CF2) has drawn on input from the Cosmic Frontier and the broader Particle Physics community to produce this document. The purposes of this report are to identify opportunities for dark matter science through indirect detection, to give an overview of the primary scientific drivers for indirect searches for dark matter, and to survey current and planned experiments that have, as a large part of their scientific program, the goal of searching for indirect (or astrophysical) signatures of dark matter. We primarily address existing experiments with a large U.S. role, or future experiments where a U.S. contribution is sought. We also address the limitations of this technique, and answer the tough questions relevant to this subgroup posed by the HEP community through the Snowmass process.
111 - S.R. Elliott , H. Ejiri 2017
Solar neutrinos interact within double-beta decay (BB) detectors and contribute to backgrounds for BB experiments. Background contributions due to charge-current solar neutrino interactions with BB nuclei of $^{76}$Ge, $^{82}$Se, $^{100}$Mo, $^{130}$Te, $^{136}$Xe, and $^{150}$Nd are evaluated. They are shown to be significant for future high-sensitivity BB experiments that may search for Majorana neutrino masses in the inverted-hierarchy mass region. The impact of solar neutrino backgrounds and their reduction are discussed for future BB experiments.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا