Do you want to publish a course? Click here

Spectral structure of transfer operators for expanding circle maps

192   0   0.0 ( 0 )
 Added by Julia Slipantschuk
 Publication date 2013
  fields
and research's language is English




Ask ChatGPT about the research

We explicitly determine the spectrum of transfer operators (acting on spaces of holomorphic functions) associated to analytic expanding circle maps arising from finite Blaschke products. This is achieved by deriving a convenient natural representation of the respective adjoint operators.



rate research

Read More

We show that for any $lambda in mathbb{C}$ with $|lambda|<1$ there exists an analytic expanding circle map such that the eigenvalues of the associated transfer operator (acting on holomorphic functions) are precisely the nonnegative powers of $lambda$ and $bar{lambda}$. As a consequence we obtain a counterexample to a variant of a conjecture of Mayer on the reality of spectra of transfer operators.
262 - Luchezar Stoyanov 2010
For Axiom A flows on basic sets satisfying certain additional conditions we prove strong spectral estimates for Ruelle transfer operators similar to these of Dolgopyat (1998) for geodesic flows on compact surfaces (for general potentials)and transitive Anosov flows on compact manifolds with C^1 jointly non-integrable horocycle foliations (for the Sinai-Bowen-Ruelle potential). Here we deal with general potentials. As is now well known, such results have deep implications in some related areas, e.g. in studying analytic properties of Ruelle zeta functions and partial differential operators, closed orbit counting functions, decay of correlations for Holder continuous potentials.
272 - John W. Robertson 2017
The goal of this paper is to construct invariant dynamical objects for a (not necessarily invertible) smooth self map of a compact manifold. We prove a result that takes advantage of differences in rates of expansion in the terms of a sheaf cohomolog ical long exact sequence to create unique lifts of finite dimensional invariant subspaces of one term of the sequence to invariant subspaces of the preceding term. This allows us to take invariant cohomological classes and under the right circumstances construct unique currents of a given type, including unique measures of a given type, that represent those classes and are invariant under pullback. A dynamically interesting self map may have a plethora of invariant measures, so the uniquess of the constructed currents is important. It means that if local growth is not too big compared to the growth rate of the cohomological class then the expanding cohomological class gives sufficient marching orders to the system to prohibit the formation of any other such invariant current of the same type (say from some local dynamical subsystem). Because we use subsheaves of the sheaf of currents we give conditions under which a subsheaf will have the same cohomology as the sheaf containing it. Using a smoothing argument this allows us to show that the sheaf cohomology of the currents under consideration can be canonically identified with the deRham cohomology groups. Our main theorem can be applied in both the smooth and holomorphic setting.
117 - Michael Yampolsky 2019
We develop a renormalization theory for analytic homeomorphisms of the circle with two cubic critical points. We prove a renormalization hyperbolicity theorem. As a basis for the proofs, we develop complex a priori bounds for multi-critical circle maps.
In this note the notions of trace compatible operators and infinitesimal spectral flow are introduced. We define the spectral shift function as the integral of infinitesimal spectral flow. It is proved that the spectral shift function thus defined is absolutely continuous and Kreins formula is established. Some examples of trace compatible affine spaces of operators are given.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا