Do you want to publish a course? Click here

Spectra of Ruelle transfer operators for Axiom A flows (Revised)

275   0   0.0 ( 0 )
 Added by Luchezar Stoyanov
 Publication date 2010
  fields
and research's language is English




Ask ChatGPT about the research

For Axiom A flows on basic sets satisfying certain additional conditions we prove strong spectral estimates for Ruelle transfer operators similar to these of Dolgopyat (1998) for geodesic flows on compact surfaces (for general potentials)and transitive Anosov flows on compact manifolds with C^1 jointly non-integrable horocycle foliations (for the Sinai-Bowen-Ruelle potential). Here we deal with general potentials. As is now well known, such results have deep implications in some related areas, e.g. in studying analytic properties of Ruelle zeta functions and partial differential operators, closed orbit counting functions, decay of correlations for Holder continuous potentials.



rate research

Read More

123 - Luchezar Stoyanov 2013
We prove exponential decay of correlations for Holder continuous observables with respect to any Gibbs measure for contact Anosov flows admitting Pesin sets with exponentially small tails. This is achieved by establishing strong spectral estimates for certain Ruelle transfer operators for such flows.
88 - Luchezar Stoyanov 2017
We prove a comprehensive version of the Ruelle-Perron-Frobenius Theorem with explicit estimates of the spectral radius of the Ruelle transfer operator and various other quantities related to spectral properties of this operator. The novelty here is that the Holder constant of the function generating the operator appears only polynomially, not exponentially as in previous known estimates.
141 - Luchezar Stoyanov 2017
In this work we study strong spectral properties of Ruelle transfer operators related to a large family of Gibbs measures for contact Anosov flows. The ultimate aim is to establish exponential decay of correlations for Holder observables with respect to a very general class of Gibbs measures. The approach invented in 1997 by Dolgopyat cite{D1} and further developed in cite{St2} is substantially refined here, allowing to deal with much more general situations than before, although we still restrict ourselves to the uniformly hyperbolic case. A rather general procedure is established which produces the desired estimates whenever the Gibbs measure admits a Pesin set with exponentially small tails, that is a Pesin set whose preimages along the flow have measures decaying exponentially fast. We call such Gibbs measures regular. Recent results in cite{GSt} prove existence of such Pesin sets for hyperbolic diffeomorphisms and flows for a large variety of Gibbs measures determined by Holder continuous potentials. The strong spectral estimates for Ruelle operators and well-established techniques lead to exponential decay of correlations for Holder continuous observables, as well as to some other consequences such as: (a) existence of a non-zero analytic continuation of the Ruelle zeta function with a pole at the entropy in a vertical strip containing the entropy in its interior; (b) a Prime Orbit Theorem with an exponentially small error.
We explicitly determine the spectrum of transfer operators (acting on spaces of holomorphic functions) associated to analytic expanding circle maps arising from finite Blaschke products. This is achieved by deriving a convenient natural representation of the respective adjoint operators.
98 - Wen Huang , Zeng Lian , Xiao Ma 2019
In this article, we consider the weighted ergodic optimization problem Axiom A attractors of a $C^2$ flow on a compact smooth manifold. The main result obtained in this paper is that for a generic observable from function space $mc C^{0,a}$ ($ain(0,1]$) or $mc C^1$ the minimizing measure is unique and is supported on a periodic orbit.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا