Do you want to publish a course? Click here

ANTARES Deep Sea Neutrino Telescope Results

134   0   0.0 ( 0 )
 Added by Salvatore Mangano
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

The ANTARES experiment is currently the largest underwater neutrino telescope in the Northern Hemisphere. It is taking high quality data since 2007. Its main scientific goal is to search for high energy neutrinos that are expected from the acceleration of cosmic rays from astrophysical sources. This contribution reviews the status of the detector and presents several analyses carried out on atmospheric muons and neutrinos. For example it shows the results from the measurement of atmospheric muon neutrino spectrum and of atmospheric neutrino oscillation parameters as well as searches for neutrinos from steady cosmic point-like sources, for neutrinos from gamma ray bursts and for relativistic magnetic monopoles.



rate research

Read More

133 - Salvatore Mangano 2012
The ANTARES telescope is the largest underwater neutrino telescope existing at present. It is based on the detection of Cherenkov light produced in sea water by neutrino-induced muons. The detector, consisting of a tri-dimensional array of 885 photomultipliers arranged on twelve vertical lines, is located at a depth of 2475 m in the Mediterranean Sea, 40 km off the French coast. The main goal of the experiment is to probe the Universe by means of neutrino events in an attempt to investigate the nature of high energy astrophysical sources, to contribute to the identification of cosmic ray sources, and to explore the nature of dark matter. In this contribution we will review the status of the detector, illustrate its operation and performance, and present the first results from the analysis carried out on atmospheric muons and neutrinos, as well as from the search for astrophysical neutrino sources.
331 - V. Van Elewyck 2013
The ANTARES neutrino telescope is currently the largest operating water Cherenkov detector and the largest neutrino detector in the Northern Hemisphere. Its main scientific target is the detection of high-energy (TeV and beyond) neutrinos from cosmic accelerators, as predicted by hadronic interaction models, and the measurement of the diffuse neutrino flux. Its location allows for surveying a large part of the Galactic Plane, including the Galactic Centre. In addition to the standalone searches for point-like and diffuse high-energy neutrino signals, ANTARES has developed a range of multi-messenger strategies to exploit the close connection between neutrinos and other cosmic messengers such as gamma-rays, charged cosmic rays and gravitational waves. This contribution provides an overview of the recently conducted analyses, including a search for neutrinos from the Fermi bubbles region, searches for optical counterparts with the TAToO program, and searches for neutrinos in correlation with gamma-ray bursts, blazars, and microquasars. Further topics of investigation, covering e.g. the search for neutrinos from dark matter annihilation, searches for exotic particles and the measurement of neutrino oscillations, are also reviewed.
We develop a novel technique to exploit the extensive data sets provided by underwater neutrino telescopes to gain information on bioluminescence in the deep sea. The passive nature of the telescopes gives us the unique opportunity to infer information on bioluminescent organisms without actively interfering with them. We propose a statistical method that allows us to reconstruct the light emission of individual organisms, as well as their location and movement. A mathematical model is built to describe the measurement process of underwater neutrino telescopes and the signal generation of the biological organisms. The Metric Gaussian Variational Inference algorithm is used to reconstruct the model parameters using photon counts recorded by the neutrino detectors. We apply this method to synthetic data sets and data collected by the ANTARES neutrino telescope. The telescope is located 40 km off the French coast and fixed to the sea floor at a depth of 2475 m. The runs with synthetic data reveal that we can reliably model the emitted bioluminescent flashes of the organisms. Furthermore, we find that the spatial resolution of the localization of light sources highly depends on the configuration of the telescope. Precise measurements of the efficiencies of the detectors and the attenuation length of the water are crucial to reconstruct the light emission. Finally, the application to ANTARES data reveals the first precise localizations of bioluminescent organisms using neutrino telescope data.
123 - S. Mangano 2013
The ANTARES experiment is currently the largest underwater neutrino telescope. It is taking high quality data since 2007 and aims to detect high energy neutrinos that are expected from the acceleration of cosmic rays from astrophysical sources. We will review the status of the detector and present several analyses carried out on atmospheric muons and neutrinos. For example we will show the latest results from searches for neutrinos from steady cosmic point-like sources, for neutrinos from Fermi Bubbles, for neutrinos from Dark Matter in the Sun and the measurement of atmospheric neutrino oscillation parameters.
The AMADEUS (ANTARES Modules for the Acoustic Detection Under the Sea) system which is described in this article aims at the investigation of techniques for acoustic detection of neutrinos in the deep sea. It is integrated into the ANTARES neutrino telescope in the Mediterranean Sea. Its acoustic sensors, installed at water depths between 2050 and 2300 m, employ piezo-electric elements for the broad-band recording of signals with frequencies ranging up to 125 kHz. The typical sensitivity of the sensors is around -145 dB re 1V/muPa (including preamplifier). Completed in May 2008, AMADEUS consists of six acoustic clusters, each comprising six acoustic sensors that are arranged at distances of roughly 1 m from each other. Two vertical mechanical structures (so-called lines) of the ANTARES detector host three acoustic clusters each. Spacings between the clusters range from 14.5 to 340 m. Each cluster contains custom-designed electronics boards to amplify and digitise the acoustic signals from the sensors. An on-shore computer cluster is used to process and filter the data stream and store the selected events. The daily volume of recorded data is about 10 GB. The system is operating continuously and automatically, requiring only little human intervention. AMADEUS allows for extensive studies of both transient signals and ambient noise in the deep sea, as well as signal correlations on several length scales and localisation of acoustic point sources. Thus the system is excellently suited to assess the background conditions for the measurement of the bipolar pulses expected to originate from neutrino interactions.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا