Do you want to publish a course? Click here

Selected results from the ANTARES neutrino telescope

134   0   0.0 ( 0 )
 Added by Salvatore Mangano
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

The ANTARES telescope is the largest underwater neutrino telescope existing at present. It is based on the detection of Cherenkov light produced in sea water by neutrino-induced muons. The detector, consisting of a tri-dimensional array of 885 photomultipliers arranged on twelve vertical lines, is located at a depth of 2475 m in the Mediterranean Sea, 40 km off the French coast. The main goal of the experiment is to probe the Universe by means of neutrino events in an attempt to investigate the nature of high energy astrophysical sources, to contribute to the identification of cosmic ray sources, and to explore the nature of dark matter. In this contribution we will review the status of the detector, illustrate its operation and performance, and present the first results from the analysis carried out on atmospheric muons and neutrinos, as well as from the search for astrophysical neutrino sources.



rate research

Read More

332 - V. Van Elewyck 2013
The ANTARES neutrino telescope is currently the largest operating water Cherenkov detector and the largest neutrino detector in the Northern Hemisphere. Its main scientific target is the detection of high-energy (TeV and beyond) neutrinos from cosmic accelerators, as predicted by hadronic interaction models, and the measurement of the diffuse neutrino flux. Its location allows for surveying a large part of the Galactic Plane, including the Galactic Centre. In addition to the standalone searches for point-like and diffuse high-energy neutrino signals, ANTARES has developed a range of multi-messenger strategies to exploit the close connection between neutrinos and other cosmic messengers such as gamma-rays, charged cosmic rays and gravitational waves. This contribution provides an overview of the recently conducted analyses, including a search for neutrinos from the Fermi bubbles region, searches for optical counterparts with the TAToO program, and searches for neutrinos in correlation with gamma-ray bursts, blazars, and microquasars. Further topics of investigation, covering e.g. the search for neutrinos from dark matter annihilation, searches for exotic particles and the measurement of neutrino oscillations, are also reviewed.
123 - S. Mangano 2013
The ANTARES experiment is currently the largest underwater neutrino telescope. It is taking high quality data since 2007 and aims to detect high energy neutrinos that are expected from the acceleration of cosmic rays from astrophysical sources. We will review the status of the detector and present several analyses carried out on atmospheric muons and neutrinos. For example we will show the latest results from searches for neutrinos from steady cosmic point-like sources, for neutrinos from Fermi Bubbles, for neutrinos from Dark Matter in the Sun and the measurement of atmospheric neutrino oscillation parameters.
134 - Salvatore Mangano 2013
The ANTARES experiment is currently the largest underwater neutrino telescope in the Northern Hemisphere. It is taking high quality data since 2007. Its main scientific goal is to search for high energy neutrinos that are expected from the acceleration of cosmic rays from astrophysical sources. This contribution reviews the status of the detector and presents several analyses carried out on atmospheric muons and neutrinos. For example it shows the results from the measurement of atmospheric muon neutrino spectrum and of atmospheric neutrino oscillation parameters as well as searches for neutrinos from steady cosmic point-like sources, for neutrinos from gamma ray bursts and for relativistic magnetic monopoles.
133 - G. Giacomelli 2008
The ANTARES underwater neutrino telescope, at a depth of 2475 m in the Mediterranean Sea, near Toulon, is taking data in its final configuration of 12 detection lines. Each line is equipped with 75 photomultipliers (PMT) housed in glass pressure spheres arranged in 25 triplets at depths between 100 and 450 m above the sea floor. The PMTs look down at 45^o to have better sensitivity to the Cherenkov light from upgoing muons produced in the interactions of high energy neutrinos traversing the Earth. Such neutrinos may arrive from a variety of astrophysical sources, though the majority are atmospheric neutrinos. The data from 5 lines in operation in 2007 yielded a sufficient number of downgoing muons with which to study the detector performances, the vertical muon intensity and reconstruct the first upgoing neutrino induced muons.
Compelling evidence for the existence of astrophysical neutrinos has been reported by the IceCube collaboration. Some features of the energy and declination distributions of IceCube events hint at a North/South asymmetry of the neutrino flux. This could be due to the presence of the bulk of our Galaxy in the Southern hemisphere. The ANTARES neutrino telescope, located in the Mediterranean Sea, has been taking data since 2007. It offers the best sensitivity to muon neutrinos produced by galactic cosmic ray interactions in this region of the sky. In this letter a search for an extended neutrino flux from the Galactic Ridge region is presented. Different models of neutrino production by cosmic ray propagation are tested. No excess of events is observed and upper limits for different neutrino flux spectral indices are set. This constrains the number of IceCube events possibly originating from the Galactic Ridge. A simple power-law extrapolation of the Fermi-LAT flux to associated IceCube High Energy Starting Events is excluded at 90% confidence level.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا