Do you want to publish a course? Click here

Studying Bioluminescence Flashes with the ANTARES Deep Sea Neutrino Telescope

125   0   0.0 ( 0 )
 Added by Nico Reeb
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

We develop a novel technique to exploit the extensive data sets provided by underwater neutrino telescopes to gain information on bioluminescence in the deep sea. The passive nature of the telescopes gives us the unique opportunity to infer information on bioluminescent organisms without actively interfering with them. We propose a statistical method that allows us to reconstruct the light emission of individual organisms, as well as their location and movement. A mathematical model is built to describe the measurement process of underwater neutrino telescopes and the signal generation of the biological organisms. The Metric Gaussian Variational Inference algorithm is used to reconstruct the model parameters using photon counts recorded by the neutrino detectors. We apply this method to synthetic data sets and data collected by the ANTARES neutrino telescope. The telescope is located 40 km off the French coast and fixed to the sea floor at a depth of 2475 m. The runs with synthetic data reveal that we can reliably model the emitted bioluminescent flashes of the organisms. Furthermore, we find that the spatial resolution of the localization of light sources highly depends on the configuration of the telescope. Precise measurements of the efficiencies of the detectors and the attenuation length of the water are crucial to reconstruct the light emission. Finally, the application to ANTARES data reveals the first precise localizations of bioluminescent organisms using neutrino telescope data.



rate research

Read More

141 - Salvatore Mangano 2013
The ANTARES experiment is currently the largest underwater neutrino telescope in the Northern Hemisphere. It is taking high quality data since 2007. Its main scientific goal is to search for high energy neutrinos that are expected from the acceleration of cosmic rays from astrophysical sources. This contribution reviews the status of the detector and presents several analyses carried out on atmospheric muons and neutrinos. For example it shows the results from the measurement of atmospheric muon neutrino spectrum and of atmospheric neutrino oscillation parameters as well as searches for neutrinos from steady cosmic point-like sources, for neutrinos from gamma ray bursts and for relativistic magnetic monopoles.
The AMADEUS (ANTARES Modules for the Acoustic Detection Under the Sea) system which is described in this article aims at the investigation of techniques for acoustic detection of neutrinos in the deep sea. It is integrated into the ANTARES neutrino telescope in the Mediterranean Sea. Its acoustic sensors, installed at water depths between 2050 and 2300 m, employ piezo-electric elements for the broad-band recording of signals with frequencies ranging up to 125 kHz. The typical sensitivity of the sensors is around -145 dB re 1V/muPa (including preamplifier). Completed in May 2008, AMADEUS consists of six acoustic clusters, each comprising six acoustic sensors that are arranged at distances of roughly 1 m from each other. Two vertical mechanical structures (so-called lines) of the ANTARES detector host three acoustic clusters each. Spacings between the clusters range from 14.5 to 340 m. Each cluster contains custom-designed electronics boards to amplify and digitise the acoustic signals from the sensors. An on-shore computer cluster is used to process and filter the data stream and store the selected events. The daily volume of recorded data is about 10 GB. The system is operating continuously and automatically, requiring only little human intervention. AMADEUS allows for extensive studies of both transient signals and ambient noise in the deep sea, as well as signal correlations on several length scales and localisation of acoustic point sources. Thus the system is excellently suited to assess the background conditions for the measurement of the bipolar pulses expected to originate from neutrino interactions.
184 - Salvatore Mangano 2009
Recently different experiments mention to have observed a large scale cosmic-ray anisotropy at TeV energies, e.g. Milagro, Tibet and Super-Kamiokande. For these energies the cosmic-rays are expected to be nearly isotropic. Any measurements of cosmic-rays anisotropy could bring some information about propagation and origin of cosmic-rays. Though the primary aim of the ANTARES neutrino telescope is the detection of high energy cosmic neutrinos, the detector measures mainly down-doing muons, which are decay products of cosmic-rays collisions in the Earths atmosphere. This proceeding describes an anlaysis method for the first year measurement of down-going atmospheric muons at TeV energies in the ANTARES experiment, when five out of the final number of twelve lines were taking data.
We develop a modeling framework for bioluminescence light found in the deep sea near neutrino telescopes by combining a hydrodynamic model with a stochastic one. The bioluminescence is caused by organisms when exposed to a non-constant water flow, such as past the neutrino telescopes. We model the flow using the incompressible Navier-Stokes equations for Reynolds numbers between 4000 and 23000. The discretization relies on a finite element method which includes upwind-stabilization for the velocity field. On top of the flow model, we simulate a population of random microscopic organisms. Their movement and emission are stochastic processes which we model using Monte Carlo methods. We observe unique time-series for the photon counts depending on the flow velocity and detector specifications. This opens up the possibility of categorizing organisms using neutrino detectors. We show that the average light-yield and pulse shapes require precise flow modeling, while the emission timing is chaotic. From this we construct a fast modeling scheme, requiring only a subset of computationally expensive flow and population modeling.
A search for cosmic neutrino sources using the data collected with the ANTARES neutrino telescope between early 2007 and the end of 2015 is performed. For the first time, all neutrino interactions --charged and neutral current interactions of all flavours-- are considered in a search for point-like sources with the ANTARES detector. In previous analyses, only muon neutrino charged current interactions were used. This is achieved by using a novel reconstruction algorithm for shower-like events in addition to the standard muon track reconstruction. The shower channel contributes about 23% of all signal events for an $E^{-2}$ energy spectrum. No significant excess over background is found. The most signal-like cluster of events is located at $(alpha,delta) = (343.8^circ, 23.5^circ)$ with a significance of $1.9sigma$. The neutrino flux sensitivity of the search is about $E^2 dvarPhi/dE = 6cdot10^{-9} GeV cm^{-2} s^{-1}$ for declinations from $-90^circ$ up to $-42^circ$, and below $10^{-8} GeV cm^{-2} s^{-1}$ for declinations up to $5^{circ}$. The directions of 106 source candidates and of 13 muon track events from the IceCube HESE sample are investigated for a possible neutrino signal and upper limits on the signal flux are determined.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا