Do you want to publish a course? Click here

Investigation of MoS2 and Graphene Nanosheets by Magnetic Force Microscopy

252   0   0.0 ( 0 )
 Added by Hai Li
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

For the first time, the magnetic force microscopy (MFM) is used to characterize the mechanically-exfoliated single- and few-layer MoS2 and graphene nanosheets. By analysis of the phase and amplitude shifts, the magnetic response of MoS2 and graphene nanosheets exhibits the dependence on their layer number. However, the solution-processed single-layer MoS2 nanosheet shows the reverse magnetic signal to the mechanically-exfoliated one, and the graphene oxide nanosheet has not shown any detectable magnetic signal. Importantly, graphene and MoS2 flakes become nonmagnetic when they exceed a certain thickness.



rate research

Read More

We report a technique for transferring large areas of the CVD-grown, few-layer MoS2 from the original substrate to another arbitrary substrate and onto holey substrates, in order to obtain free-standing structures. The method consists of a polymer- and residue-free, surface-tension-assisted wet transfer, in which we take advantage of the hydrophobic properties of the MoS2. The methods yields better quality transferred layers, with fewer cracks and defects, and less contamination than the widely used PMMA-mediated transfer and allows fabrication of few-layer, fee-standing structures with diameters up to 100 micro-m. We report thermal conductivity measurements by means of contactless Raman thermometry on the so-fabricated samples. The measurements revealed a strong reduction in the in-plane thermal conductivity down to 0.5 W/mK. The results are explained using finite elements method simulations for a polycrystalline film.
Epitaxial graphene grown on transition metal surfaces typically exhibits a moire pattern due to the lattice mismatch between graphene and the underlying metal surface. We use both scanning tunneling microscopy (STM) and atomic force microscopy (AFM) experiments to probe the electronic and topographic contrast of the graphene moire on the Ir(111) surface. While STM topography is influenced by the local density of states close to the Fermi energy and the local tunneling barrier height, AFM is capable of yielding the true surface topography once the background force arising from the van der Waals (vdW) interaction between the tip and the substrate is taken into account. We observe a moire corrugation of 35$pm$10 pm, where the graphene-Ir(111) distance is the smallest in the areas where the graphene honeycomb is atop the underlying iridium atoms and larger on the fcc or hcp threefold hollow sites.
We employ electrostatic force microscopy to study the electrostatic environment of graphene sheets prepared with the micro-mechanical exfoliation technique. We detect the electric dipole of residues left from the adhesive tape during graphene preparation, as well as the dipole of water molecules adsorbed on top of graphene. Water molecules form a dipole layer that can generate an electric field as large as 10^9 V/m. We expect that water molecules can significantly modify the electrical properties of graphene devices.
73 - Jyoti Shakya , Gayathri H N , 2021
We report piezoelectric response in liquid phase exfoliated MoS2 nanosheets with desired structure and morphology. The piezoelectric effect in liquid phase exfoliated few layers of MoS2 flakes is interesting as it may allow the scalable fabrication of electronic devices such as self-powered electronics, piezoelectric transformers, antennas and more. The piezo force microscopy (PFM) measurements were used to quantify the amplitude and phase loop, which shows strong piezoelectric coefficient. Herein, the piezoelectric response in few layers of MoS2 is attributed to the defects formed in it during the synthesis procedure. The presence of defects is confirmed by XPS analysis
We show that the lack of inversion symmetry in monolayer MoS2 allows strong optical second harmonic generation. Second harmonic of an 810-nm pulse is generated in a mechanically exfoliated monolayer, with a nonlinear susceptibility on the order of 1E-7 m/V. The susceptibility reduces by a factor of seven in trilayers, and by about two orders of magnitude in even layers. A proof-of-principle second harmonic microscopy measurement is performed on samples grown by chemical vapor deposition, which illustrates potential applications of this effect in fast and non-invasive detection of crystalline orientation, thickness uniformity, layer stacking, and single-crystal domain size of atomically thin films of MoS2 and similar materials.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا