Do you want to publish a course? Click here

Influence of sample geometry on inductive damping measurement methods

127   0   0.0 ( 0 )
 Added by Niklas Liebing
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study the precession frequency and effective damping of patterned permalloy thin films of different geometry using integrated inductive test structures. The test structures consist of coplanar wave guides fabricated onto patterned permalloy stripes of different geometry. The width, length and position of the permalloy stripe with respect to the center conductor of the wave guide are varied. The precession frequency and effective damping of the different devices is derived by inductive measurements in time and frequency domain in in-plane magnetic fields. While the precession frequencies do not reveal a significant dependence on the sample geometry we find a decrease of the measured damping with increasing width of the permalloy centered underneath the center conductor of the coplanar wave guide. We attribute this effect to an additional damping contribution due to inhomogeneous line broadening at the edges of the permalloy stripes which does not contribute to the inductive signal provided the permalloy stripe is wider than the center conductor. Consequences for inductive determination of the effective damping using such integrated reference samples are discussed.



rate research

Read More

The dependence of the vortex penetration and expulsion on the geometry of mesoscopic superconductors is reported. Hall magnetometry measurements were performed on a superconducting Al square and triangle. The stability of the vortex patterns imposed by the sample geometry is discussed. The field-temperature $H-T$ diagram has been reconstructed showing the transitions between states with different vorticity. We have found that the vortex penetration is only weakly affected by the vortex configuration inside the sample while the expulsion is strongly controlled by the stability of the vortex patterns. A qualitative explanation for this observation is given.
Harmonic Hall voltage measurements are a wide-spread quantitative technique for the measurement of spin-orbit induced effective fields in heavy-metal / ferromagnet heterostructures. In the vicinity of the voltage pickup lines in the Hall bar, the current is inhomogeneous, which leads to a hitherto not quantified reduction of the effective fields and derived quantities, such as the spin Hall angle or the spin Hall conductivity. Here we present a thorough analysis of the influence of the aspect ratio of the voltage pickup lines to current channel widths on the apparent spin Hall angle. Experiments were performed with Hall bars with a broad range of aspect ratios and a substantial reduction of the apparent spin Hall angle is already seen in Hall crosses with an aspect ratio of 1:1. Our experimental results are confirmed by finite-element simulations of the current flow.
We present the first measurements of the third moment of the voltage fluctuations in a conductor. This technique can provide new and complementary information on the electronic transport in conducting systems. The measurement was performed on non-superconducting tunnel junctions as a function of voltage bias, for various temperatures and bandwidths up to 1GHz. The data demonstrate the significant effect of the electromagnetic environment of the sample.
In this paper we study the influence of sample geometry on the measurement of pressure-saturation relationships, by analyzing the drainage of a two-phase flow from a quasi-2D random porous medium. The medium is transparent, which allows for the direct visualization of the invasion pattern during flow, and is initially saturated with a viscous liquid (a dyed glycerol-water mix). As the pressure in the liquid is gradually reduced, air penetrates from an open inlet, displacing the liquid which leaves the system from an outlet on the opposite side. Pressure measurements and images of the flow are recorded and the pressure-saturation relationship is computed. We show that this relationship depends on the system size and aspect ratio. The effects of the systems boundaries on this relationship are measured experimentally and compared with simulations produced using an invasion percolation algorithm. The pressure build up at the beginning and end of the invasion process are particularly affected by the boundaries of the system whereas at the central part of the model (when the air front progresses far from these boundaries), the invasion happens at a statistically constant capillary pressure. These observations have led us to propose a much simplified pressure-saturation relationship, valid for systems that are large enough such that the invasion is not influenced by boundary effects. The properties of this relationship depend on the capillary pressure thresholds distribution, sample dimensions and average pore connectivity and its applications may be of particular interest for simulations of two-phase flow in large porous media.
102 - E.J. Koop , A.I. Lerescu , J. Liu 2007
The conductance of a quantum point contact (QPC) shows several features that result from many-body electron interactions. The spin degeneracy in zero magnetic field appears to be spontaneously lifted due to the so-called 0.7 anomaly. Further, the g-factor for electrons in the QPC is enhanced, and a zero-bias peak in the conductance points to similarities with transport through a Kondo impurity. We report here how these many-body effects depend on QPC geometry. We find a clear relation between the enhanced g-factor and the subband spacing in our QPCs, and can relate this to the device geometry with electrostatic modeling of the QPC potential. We also measured the zero-field energy splitting related to the 0.7 anomaly, and studied how it evolves into a splitting that is the sum of the Zeeman effect and a field-independent exchange contribution when applying a magnetic field. While this exchange contribution shows sample-to-sample fluctuations and no clear dependence on QPC geometry, it is for all QPCs correlated with the zero-field splitting of the 0.7 anomaly. This provides evidence that the splitting of the 0.7 anomaly is dominated by this field-independent exchange splitting. Signatures of the Kondo effect also show no regular dependence on QPC geometry, but are possibly correlated with splitting of the 0.7 anomaly.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا