No Arabic abstract
In this paper we study the influence of sample geometry on the measurement of pressure-saturation relationships, by analyzing the drainage of a two-phase flow from a quasi-2D random porous medium. The medium is transparent, which allows for the direct visualization of the invasion pattern during flow, and is initially saturated with a viscous liquid (a dyed glycerol-water mix). As the pressure in the liquid is gradually reduced, air penetrates from an open inlet, displacing the liquid which leaves the system from an outlet on the opposite side. Pressure measurements and images of the flow are recorded and the pressure-saturation relationship is computed. We show that this relationship depends on the system size and aspect ratio. The effects of the systems boundaries on this relationship are measured experimentally and compared with simulations produced using an invasion percolation algorithm. The pressure build up at the beginning and end of the invasion process are particularly affected by the boundaries of the system whereas at the central part of the model (when the air front progresses far from these boundaries), the invasion happens at a statistically constant capillary pressure. These observations have led us to propose a much simplified pressure-saturation relationship, valid for systems that are large enough such that the invasion is not influenced by boundary effects. The properties of this relationship depend on the capillary pressure thresholds distribution, sample dimensions and average pore connectivity and its applications may be of particular interest for simulations of two-phase flow in large porous media.
We present a detailed comparison of the rheological behaviour of sheared sediment beds in a pressure-driven, straight channel configuration based on data that was generated by means of fully coupled, grain-resolved direct numerical simulations and experimental measurements reviously published by Aussillous {it et al.} (J. Fluid Mech., vol. 736, 2013, pp. 594-615). The highly-resolved simulation data allows to compute the stress balance of the suspension in the streamwise and vertical directions and the stress exchange between the fluid and particle phase, which is information needed to infer the rheology, but has so far been unreachable in experiments. Applying this knowledge to the experimental and numerical data, we obtain the statistically-stationary, depth-resolved profiles of the relevant rheological quantities. The scaling behavior of rheological quantities such as the shear and normal viscosities and the effective friction coefficient are examined and compared to data coming from rheometry experiments and from widely-used rheological correlations. We show that rheological properties that have previously been inferred for annular Couette-type shear flows with neutrally buoyant particles still hold for our setup of sediment transport in a Poiseuille flow and in the dense regime we found good agreement with empirical relationships derived therefrom. Subdividing the total stress into parts from particle contact and hydrodynamics suggests a critical particle volume fraction of 0.3 to separate the dense from the dilute regime. In the dilute regime, i.e., the sediment transport layer, long-range hydrodynamic interactions are screened by the porous media and the effective viscosity obeys the Einstein relation.
Unlike pressure-driven flows, surface-mediated phoretic flows provide efficient means to drive fluid motion on very small scales. Colloidal particles covered with chemically-active patches with nonzero phoretic mobility (e.g. Janus particles) swim using self-generated gradients, and similar physics can be exploited to create phoretic pumps. Here we analyse in detail the design principles of phoretic pumps and show that for a minimal phoretic pump, consisting of 3 distinct chemical patches, the optimal arrangement of the patches maximizing the flow rate is universal and independent of chemistry.
Wettability is a pore-scale property that has an important impact on capillarity, residual trapping, and hysteresis in porous media systems. In many applications, the wettability of the rock surface is assumed to be constant in time and uniform in space. However, many fluids are capable of altering the wettability of rock surfaces permanently and dynamically in time. Experiments have shown wettability alteration can significantly decrease capillarity in CO$_2$ storage applications. For these systems, the standard capillary-pressure model that assumes static wettability is insufficient to describe the physics. In this paper, we develop a new dynamic capillary-pressure model that takes into account changes in wettability at the pore-level by adding a dynamic term to the standard capillary pressure function. We simulate the dynamic system using a bundle-of-tubes (BoT) approach, where a mechanistic model for time-dependent contact angle change is introduced at the pore scale. The resulting capillary pressure curves are then used to quantify the dynamic component of the capillary pressure function. This study shows the importance of time-dependent wettability for determining capillary pressure over timescales of months to years. The impact of wettability has implications for experimental methodology as well as macroscale simulation of wettability-altering fluids.
When a droplet impacts a fabric mesh at a sufficiently high impact velocity, it not only spreads over the fabric but also penetrate its pores. To determine the influence of this liquid penetration of the fabric on droplet spreading on thin fabric meshes, we measured the droplet spreading ratio on fabric with and without an underlying substrate using a high-speed camera. For fabrics without a substrate, the droplet spreading ratio is reduced as the fabric penetration by the liquid reduces the droplet volume spreading on top of the fabric. Using entropic lattice Boltzmann simulations, we find that the lower droplet spreading ratio on fabrics, both with and without a substrate, is due to an increase of viscous losses inside the droplet during spreading. Comparing droplet impact of blood with its Newtonian counterpart, we show that for spreading on fabrics, just like on smooth surfaces, blood can be approximated as a Newtonian fluid.
We show that simulations of polymer rheology at a fluctuating mesoscopic scale and at the macroscopic scale where flow instabilities occur can be achieved at the same time with dissipative particle dynamics (DPD) technique.} We model the visco-elasticity of polymer liquids by introducing a finite fraction of dumbbells in the standard DPD fluid. The stretching and tumbling statistics of these dumbbells is in agreement with what is known for isolated polymers in shear flows. At the same time, the model exhibits behaviour reminiscent of drag reduction in the turbulent state: as the polymer fraction increases, the onset of turbulence in plane Couette flow is pushed to higher Reynolds numbers. The method opens up the possibility to model nontrivial rheological conditions with ensuing coarse grained polymer statistics.