Do you want to publish a course? Click here

Electron Pulse Compression with a Practical Reflectron Design for Ultrafast Electron Diffraction

188   0   0.0 ( 0 )
 Added by Yihua Wang
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

Ultrafast electron diffraction (UED) is a powerful method for studying time-resolved structural changes. Currently, space charge induced temporal broadening prevents obtaining high brightness electron pulses with sub-100 fs durations limiting the range of phenomena that can be studied with this technique. We review the state of the the art of UED in this respect and propose a practical design for reflectron based pulse compression which utilizes only electro-static optics and has a tunable temporal focal point. Our simulation shows that this scheme is capable of compressing an electron pulse containing 100,000 electrons with 60:1 temporal compression ratio.



rate research

Read More

Visualizing ultrafast dynamics at the atomic scale requires time-resolved pump-probe characterization with femtosecond temporal resolution. For single-shot ultrafast electron diffraction (UED) with fully relativistic electron bunch probes, existing techniques are limited by the achievable electron probe bunch length, charge, and timing jitter. We present the first experimental demonstration of pump-probe UED with THz-driven compression and time-stamping that enable UED probes with unprecedented temporal resolution. This technique utilizes two counter-propagating quasi-single-cycle THz pulses generated from two OH-1 organic crystals coupled into an optimized THz compressor structure. Ultrafast dynamics of photoexcited bismuth films show an improved temporal resolution from 178 fs down to 85 fs when the THz-compressed UED probes are used with no time-stamping correction. Furthermore, we use a novel time-stamping technique to reveal transient oscillations in the dynamical response of THz-excited single-crystal gold films previously inaccessible by standard UED, achieving a time-stamped temporal resolution down to 5 fs.
Microwave cavities oscillating in the TM$_{110}$ mode can be used as dynamic electron-optical elements inside an electron microscope. By filling the cavity with a dielectric material it becomes more compact and power efficient, facilitating the implementation in an electron microscope. However, the incorporation of the dielectric material makes the manufacturing process more difficult. Presented here are the steps taken to characterize the dielectric material, and to reproducibly fabricate dielectric filled cavities. Also presented are t
320 - Pengfei Zhu , H. Berger , J. Cao 2013
We report the experimental demonstration of femtosecond electron diffraction using high-brightness MeV electron beams. High-quality, single-shot electron diffraction patterns for both polycrystalline aluminum and single-crystal 1T-TaS2 are obtained utilizing a 5 femto-Coulomb (~3x10^4 electrons) pulse of electrons at 2.8 MeV. The high quality of the electron diffraction patterns confirm that electron beam has a normalized emittance of ~50 nm-rad. The corresponding transverse and longitudinal coherence length are ~11 nm and ~2.5 nm, respectively. The timing jitter between the pump laser and probe electron beam was found to be ~ 100 fs (rms). The temporal resolution is demonstrated by observing the evolution of Bragg and superlattice peaks of 1T-TaS2 following an 800 nm optical pump and was found to be 130 fs. Our results demonstrate the advantages of MeV electron diffraction: such as longer coherent lengths, large scattering cross-section and larger signal-to-noise ratio, and the feasibility of ultimately realizing 10 fs time-resolved electron diffraction.
The all-optical synchronization systems used in various X-ray free-electron lasers (XFEL) such as the European XFEL observe the transient fields of passing electron bunches coupled into one or more pickups in the Bunch Arrival Time Monitors (BAM). The extracted signal is then amplitude modulated on reference laser pulses in a Mach-Zehnder type electro-optical modulator. With the emerging demand for future experiments with ultra-short FEL shots, fs precision is required for the synchronization systems even with 1 pC bunches. Since the sensitivity of the BAM depends in particular on the slope of the bipolar signal at the zero-crossing and thus, also on the bunch charge, a redesign with the aim of a significant increase by optimized geometry and bandwidth is inevitable. In this contribution the theoretical foundations of the pickup signal are aggregated and treated with a focus on ultra-short bunches as well as a general formulation. A possible new pickup concept is simulated and its performance is compared to the previous concept. A significant improvement of slope and voltage is found. The improvement is mainly achieved by the reduced distance to the beam and a higher bandwidth.
A vacuum autoresonance accelerator scheme for electrons, which employs terahertz radiation and currently available magnetic fields, is suggested. Based on numerical simulations, parameter values, which could make the scheme experimentally feasible, are identified and discussed.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا