Do you want to publish a course? Click here

Two-point function for the Maxwell field in flat Robertson-Walker spacetimes

502   0   0.0 ( 0 )
 Added by Huguet Eric
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

We obtain an explicit two-point function for the Maxwell field in flat Roberson-Walker spaces, thanks to a new gauge condition which takes the scale factor into account and assume a simple form. The two-point function is found to have the short distance Hadamard behavior.



rate research

Read More

166 - S. Fabi , B. Harms , A. Stern 2008
Upon applying Chamseddines noncommutative deformation of gravity we obtain the leading order noncommutative corrections to the Robertson-Walker metric tensor. We get an isotropic inhomogeneous metric tensor for a certain choice of the noncommutativity parameters. Moreover, the singularity of the commutative metric at $t=0$ is replaced by a more involved space-time structure in the noncommutative theory. In a toy model we construct a scenario where there is no singularity at $t=0$ at leading order in the noncommutativity parameter. Although singularities may still be present for nonzero $t$, they need not be the source of all time-like geodesics and the result resembles a bouncing cosmology.
In this paper we study the effects of quantum scalar field vacuum fluctuations on scalar test particles in an analog model for the Friedmann-Robertson-Walker spatially flat geometry. In this scenario, the cases with one and two perfectly reflecting plane boundaries are considered as well the case without boundary. We find that the particles can undergo Brownian motion with a nonzero mean squared velocity induced by the quantum vacuum fluctuations due to the time dependent background and the presence of the boundaries. Typical singularities which appears due to the presence of the boundaries in flat spacetime can be naturally regularized for an asymptotically bounded expanding scale function. Thus, shifts in the velocity could be, at least in principle, detectable experimentally. The possibility to implement this observation in an analog cosmological model by the use of a Bose-Einstein condensate is also discussed.
Conformally compactified (3+1)-dimensional Minkowski spacetime may be identified with the projective light cone in (4+2)-dimensional spacetime. In the latter spacetime the special conformal group acts via rotations and boosts, and conformal inversion acts via reflection in a single coordinate. Hexaspherical coordinates facilitate dimensional reduction of Maxwell electromagnetic field strength tensors to (3+1) from (4 + 2) dimensions. Here we focus on the operation of conformal inversion in different coordinatizations, and write some useful equations. We then write a conformal invariant and a pseudo-invariant in terms of field strengths; the pseudo-invariant in (4+2) dimensions takes a new form. Our results advance the study of general nonlinear conformal-invariant electrodynamics based on nonlinear constitutive equations.
222 - M. Ibison 2007
It is shown that only the maximally-symmetric spacetimes can be expressed in both the Robertson-Walker form and in static form - there are no other static forms of the Robertson-Walker spacetimes. All possible static forms of the metric of the maximally-symmetric spacetimes are presented as a table. The findings are generalized to apply to functionally more general spacetimes: it is shown that the maximally symmetric spacetimes are also the only spacetimes that can be written in both orthogonal-time isotropic form and in static form.
First order rotational perturbations of the Friedmann-Robertson-Walker metric are considered in the framework of the brane-world cosmological models. A rotation equation, relating the perturbations of the metric tensor to the angular velocity of the matter on the brane is derived under the assumption of slow rotation. The mathematical structure of the rotation equation imposes strong restrictions on the temporal and spatial dependence of the brane matter angular velocity. The study of the integrable cases of the rotation equation leads to three distinct models, which are considered in detail. As a general result we find that, similarly to the general relativistic case, the rotational perturbations decay due to the expansion of the matter on the brane. One of the obtained consistency conditions leads to a particular, purely inflationary brane-world cosmological model, with the cosmological fluid obeying a non-linear barotropic equation of state.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا