Do you want to publish a course? Click here

Noncommutative Corrections to the Robertson-Walker metric

176   0   0.0 ( 0 )
 Added by Allen Stern
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

Upon applying Chamseddines noncommutative deformation of gravity we obtain the leading order noncommutative corrections to the Robertson-Walker metric tensor. We get an isotropic inhomogeneous metric tensor for a certain choice of the noncommutativity parameters. Moreover, the singularity of the commutative metric at $t=0$ is replaced by a more involved space-time structure in the noncommutative theory. In a toy model we construct a scenario where there is no singularity at $t=0$ at leading order in the noncommutativity parameter. Although singularities may still be present for nonzero $t$, they need not be the source of all time-like geodesics and the result resembles a bouncing cosmology.



rate research

Read More

In this paper we study the effects of quantum scalar field vacuum fluctuations on scalar test particles in an analog model for the Friedmann-Robertson-Walker spatially flat geometry. In this scenario, the cases with one and two perfectly reflecting plane boundaries are considered as well the case without boundary. We find that the particles can undergo Brownian motion with a nonzero mean squared velocity induced by the quantum vacuum fluctuations due to the time dependent background and the presence of the boundaries. Typical singularities which appears due to the presence of the boundaries in flat spacetime can be naturally regularized for an asymptotically bounded expanding scale function. Thus, shifts in the velocity could be, at least in principle, detectable experimentally. The possibility to implement this observation in an analog cosmological model by the use of a Bose-Einstein condensate is also discussed.
533 - E. Huguet , J. Renaud 2013
We obtain an explicit two-point function for the Maxwell field in flat Roberson-Walker spaces, thanks to a new gauge condition which takes the scale factor into account and assume a simple form. The two-point function is found to have the short distance Hadamard behavior.
First order rotational perturbations of the Friedmann-Robertson-Walker metric are considered in the framework of the brane-world cosmological models. A rotation equation, relating the perturbations of the metric tensor to the angular velocity of the matter on the brane is derived under the assumption of slow rotation. The mathematical structure of the rotation equation imposes strong restrictions on the temporal and spatial dependence of the brane matter angular velocity. The study of the integrable cases of the rotation equation leads to three distinct models, which are considered in detail. As a general result we find that, similarly to the general relativistic case, the rotational perturbations decay due to the expansion of the matter on the brane. One of the obtained consistency conditions leads to a particular, purely inflationary brane-world cosmological model, with the cosmological fluid obeying a non-linear barotropic equation of state.
In this work, the Friedman equations for hadronic matter in the Robertson-Walker metric in the early Universe are obtained. We consider the hadronic phase, formed after the hadronization of the quark-gluon plasma, that means times from 10^{-6}s to 1s. The set of equations is derived and the behavior of the system is studied considering one approximate analytical solution.
144 - M. Ibison 2007
All possible transformations from the Robertson-Walker metric to those conformal to the Lorentz-Minkowski form are derived. It is demonstrated that the commonly known family of transformations and associated conformal factors are not exhaustive and that there exists another relatively less well known family of transformations with a different conformal factor in the particular case that K = -1. Simplified conformal factors are derived for the special case of maximally-symmetric spacetimes. The full set of all possible cosmologically-compatible conformal forms is presented as a comprehensive table. A product of the analysis is the determination of the set-theoretical relationships between the maximally symmetric spacetimes, the Robertson-Walker spacetimes, and functionally more general spacetimes. The analysis is preceded by a short historical review of the application of conformal metrics to Cosmology.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا