No Arabic abstract
We report on a VLA survey for late-time radio emission from 59 supernovae (SNe) of Type I b/c, which have been associated with long-duration gamma-ray bursts (GRBs). An off-axis GRB burst (i.e. whose relativistic jet points away from us) is expected to have late-time radio emission even in the absence of significant prompt gamma-ray emission. From our sample, we detected only SN 2003gk with an 8.4-GHz flux density of $2260 pm 130 ,mu$Jy. Our subsequent VLBI observations of SN 2003gk, at an age of $sim$8 yr, allowed us to determine its radius to be $(2.4 pm 0.4) times 10^{17}$ cm, or $94 pm 15$ light days. This radius rules out relativistic expansion as expected for an off-axis GRB jet, and instead suggests an expansion speed of $sim 10:000$ km s$^{-1}$ typical for non-relativistic core-collapse supernovae. We attribute the late-onset radio emission to interaction of the ejecta with a dense shell caused by episodic mass-loss from the progenitor. In addition, we present new calculations for the expected radio lightcurves from GRB jets at various angles to the line of sight, and compare these to our observed limits on the flux densities of the remainder of our SN sample. From this comparison we can say that only a fraction of broadlined Type I b/c SNe have a radio-bright jet similar to those seen for GRB afterglows at cosmological distances. However, we also find that for a reasonable range of parameters, as might be representative of the actual population of GRB events rather than the detected bright ones, the radio emission from the GRB jets can be quite faint, and that at present, radio observations do not place strong constraints on off-axis GRB jets.
Studying transient phenomena with the Very Long Baseline Interferometry (VLBI) technique faces severe difficulties because the turnaround time of the experiments from the observations to the scientific result is rather long. The e-VLBI technique has made it possible to transfer the data from a number of European VLBI Network (EVN) telescopes to the central data processor at JIVE through optical fibres, and correlate them in real time. The main goal of this paper is to introduce this rapidly developing new technique, by presenting observational results from a recent experiment. We observed SN2001em, a Type Ib/c supernova with an e-VLBI array and the Multi-Element Radio Linked Interferometer Network (MERLIN) in the UK. The source is marginally detected in our observations. We cannot make definite conclusions whether it is resolved at 1.6 GHz or not. Our data show that SN2001em either started fading in the last couple of months, or its radio spectrum is inverted at low frequencies,indicating free-free or synchrotron self-absorption. This is quite unusual, but not unprecedented in radio SNe.
Relativistic supernovae constitute a sub-class of type Ic supernovae (SNe). Their non-thermal, radio emission differs notably from that of regular type Ic supernovae as they have a fast expansion speed (with velocities $sim$ 0.6-0.8 c) which can not be explained by a standard, spherical SN explosion but advocates for a quickly evolving, mildly relativistic ejecta associated with the SN. In this paper, we compute the synchrotron radiation emitted by the cocoon of a long gamma-ray burst jet (GRB). We show that the energy and velocity of the expanding cocoon, and the radio non-thermal light curves and spectra are consistent with those observed in relativistic SNe. Thus, the radio emission from this events is not coming from the SN shock front, but from the mildly relativistic cocoon produced by the passage of a GRB jet through the progenitor star. We also show that the cocoon radio emission dominates the GRB emission at early times for GRBs seen off-axis, and the flux can be larger at late times compared with on-axis GRBs if the cocoon energy is at least comparable with respect to the GRB energy.
Follow-up observations of large numbers of gamma-ray burst (GRB) afterglows, facilitated by the Swift satellite, have produced a large sample of spectral energy distributions and light curves, from which the basic micro- and macrophysical parameters of afterglows may be derived. However, a number of phenomena have been observed that defy explanation by simp
We present observations of the recently discovered supernova 2008iz in M82 with the VLBI High Sensitivity Array at 22 GHz, the Very Large Array at frequencies of 1.4, 4.8, 8.4, 22 and 43 GHz, and the Chandra X-ray observatory. The supernova was clearly detected on two VLBI images, separated by 11 months. The source shows a ring-like morphology and expands with a velocity of ~23000 km/s. The most likely explosion date is in mid February 2008. The measured expansion speed is a factor of ~2 higher than expected under the assumption that synchrotron self-absorption dominates the light curve at the peak, indicating that this absorption mechanism may not be important for the radio emission. We find no evidence for an asymmetric explosion. The VLA spectrum shows a broken power law, indicating that the source was still optically thick at 1.4 GHz in April 2009. Finally, we report upper limits on the X-ray emission from SN 2008iz and a second radio transient recently discovered by MERLIN observations.
In light of the most recent observations of late afterglows produced by the merger of compact objects or by the core-collapse of massive dying stars, we research the evolution of the afterglow produced by an off-axis top-hat jet and its interaction with a surrounding medium. The medium is parametrized by a power law distribution of the form $n(r)propto r^{-k}$ is the stratification parameter and contains the development when the surrounding density is constant ($k=0$) or wind-like ($k=2$). We develop an analytical synchrotron forward-shock model when the outflow is viewed off-axis, and it is decelerated by a stratified medium. Using the X-ray data points collected by a large campaign of orbiting satellites and ground telescopes, we have managed to apply our model and fit the X-ray spectrum of the GRB afterglow associated to SN 2020bvc with conventional parameters. Our model predicts that its circumburst medium is parametrized by a power law with stratification parameter $k=1.5$.