No Arabic abstract
Relativistic supernovae constitute a sub-class of type Ic supernovae (SNe). Their non-thermal, radio emission differs notably from that of regular type Ic supernovae as they have a fast expansion speed (with velocities $sim$ 0.6-0.8 c) which can not be explained by a standard, spherical SN explosion but advocates for a quickly evolving, mildly relativistic ejecta associated with the SN. In this paper, we compute the synchrotron radiation emitted by the cocoon of a long gamma-ray burst jet (GRB). We show that the energy and velocity of the expanding cocoon, and the radio non-thermal light curves and spectra are consistent with those observed in relativistic SNe. Thus, the radio emission from this events is not coming from the SN shock front, but from the mildly relativistic cocoon produced by the passage of a GRB jet through the progenitor star. We also show that the cocoon radio emission dominates the GRB emission at early times for GRBs seen off-axis, and the flux can be larger at late times compared with on-axis GRBs if the cocoon energy is at least comparable with respect to the GRB energy.
The short-duration ($lesssim2;$s) GRB 170817A in the nearby ($D=40;$Mpc) elliptical galaxy NGC 4993 is the first electromagnetic counterpart of the first gravitational wave (GW) detection of a binary neutron-star (NS-NS) merger. It was followed by optical, IR, and UV emission from half a day up to weeks after the event, as well as late time X-ray and radio emission. The early UV, optical, and IR emission showed a quasi-thermal spectrum suggestive of radioactive-decay powered kilonova-like emission. Comparison to kilonova models favors the formation of a short-lived ($sim1;$s) hypermassive NS, which is also supported by the $Delta tapprox1.74;$s delay between the GW chirp signal and the prompt GRB onset. However, the late onset of the X-ray (8.9$;$days) and radio (16.4$;$days) emission, together with the low isotropic equivalent $gamma$-ray energy output ($E_{rmgamma,iso}approx5times10^{46};$erg), strongly suggest emission from a narrow relativistic jet viewed off-axis. Here we set up a general framework for off-axis GRB jet afterglow emission, comparing analytic and numerical approaches, and showing their general predictions for short-hard GRBs that accompany binary NS mergers. The prompt GRB emission suggests a viewing angle well outside the jets core, and we compare the afterglow lightcurves expected in such a case to the X-ray to radio emission from GRB 170817A. We fit an afterglow off-axis jet model to the X-ray and radio data and find that the observations are explained by a viewing angle $theta_{rm obs}approx16^circ-26^circ$, GRB jet energy $Esim10^{48.5}-10^{49.5}~{rm erg}$, and external density $nsim10^{-5}-10^{-1}~{rm cm}^{-3}$ for a $xi_esim 0.1$ non-thermal electron acceleration efficiency.
In light of the most recent observations of late afterglows produced by the merger of compact objects or by the core-collapse of massive dying stars, we research the evolution of the afterglow produced by an off-axis top-hat jet and its interaction with a surrounding medium. The medium is parametrized by a power law distribution of the form $n(r)propto r^{-k}$ is the stratification parameter and contains the development when the surrounding density is constant ($k=0$) or wind-like ($k=2$). We develop an analytical synchrotron forward-shock model when the outflow is viewed off-axis, and it is decelerated by a stratified medium. Using the X-ray data points collected by a large campaign of orbiting satellites and ground telescopes, we have managed to apply our model and fit the X-ray spectrum of the GRB afterglow associated to SN 2020bvc with conventional parameters. Our model predicts that its circumburst medium is parametrized by a power law with stratification parameter $k=1.5$.
GRB 131231A was detected by the Large Area Telescope onboard Fermi Space Gamma-ray Telescope. The high energy gamma-ray ($> 100$ MeV) afterglow emission spectrum is $F_ u propto u^{-0.54pm0.15}$ in the first $sim 1300$ s after the trigger and the most energetic photon has an energy $sim 62$ GeV arriving at $tsim 520$ s. With reasonable parameters of the GRB outflow as well as the density of the circum-burst medium, the synchrotron radiation of electrons or protons accelerated at an external forward shock have difficulty accounting for the data. The synchrotron self-Compton radiation of the forward shock-accelerated electrons, instead, can account for both the spectrum and temporal behavior of the GeV afterglow emission. We also show that the prospect for detecting GRB 131231A$-$like GRBs with Cherenkov Telescope Array (CTA) is promising.
The afterglow of GRB 170817A has been detected for more than three years, but the origin of the multi-band afterglow light curves remains under debate. A classical top-hat jet model is faced with difficulties in producing a shallow rise of the afterglow light curves as observed $(F_{ u} propto T^{0.8})$. Here we reconsider the model of stratified ejecta with energy profile of $E(>Gamma beta)=E_0(Gamma beta)^{-k}$ as the origin of the afterglow light curves of the burst, where $Gamma$ and $beta$ are the Lorentz factor and speed of the ejecta, respectively. $k$ is the power-law slope of the energy profile. We consider the ejecta are collimated into jets. Two kinds of jet evolutions are investigated, including a lateral-spreading jet and a non-lateral-spreading jet. We fit the multi-band afterglow light curves, including the X-ray data at one thousand days post-burst, and find that both the models of the spreading and non-spreading jets can fit the light curves well, but the observed angular size of the source and the apparent velocity of the flux centroid for the spreading jet model are beyond the observation limits, while the non-spreading jet model meets the observation limits. Some of the best-fit parameters for the non-spreading jet model, such as the number density of the circumburst medium $sim10^{-2}$ cm$^{-3}$ and the total jet kinetic energy $E sim 4.8times 10^{51}$ erg, also appear plausible. The best-fit slope of the jet energy profile is $k sim 7.1$. Our results suggest that the afterglow of GRB 170817A may arise from the stratified jet and that the lateral spreading of the jet is not significant.
A relativistic electron-positron ($e^{+}e^{-}$) pair wind from a rapidly rotating, strongly magnetized neutron star (NS) would interact with a gamma-ray burst (GRB) external shock and reshapes afterglow emission signatures. Assuming that the merger remnant of GW170817 is a long-lived NS, we show that a relativistic $e^{+}e^{-}$ pair wind model with a simple top-hat jet viewed off-axis can reproduce multi-wavelength afterglow lightcurves and superluminal motion of GRB 170817A. The Markov chain Monte Carlo (MCMC) method is adopted to obtain the best-fitting parameters, which give the jet half-opening angle $theta_{j}approx0.11$ rad, and the viewing angle $theta_{v}approx0.23$ rad. The best-fitting value of $theta_{v}$ is close to the lower limit of the prior which is chosen based on the gravitational-wave and electromagnetic observations. In addition, we also derive the initial Lorentz factor $Gamma_{0}approx47$ and the isotropic kinetic energy $E_{rm K,iso}approx2times10^{52}rm erg$. A consistence between the corrected on-axis values for GRB 170817A and typical values observed for short GRBs indicates that our model can also reproduce the prompt emission of GRB 170817A. An NS with a magnetic field strength $B_{p}approx1.6times10^{13}rm G$ is obtained in our fitting, indicating that a relatively low thermalization efficiency $etalesssim10^{-3}$ is needed to satisfy observational constraints on the kilonova. Furthermore, our model is able to reproduce a late-time shallow decay in the X-ray lightcurve and predicts that the X-ray and radio flux will continue to decline in the coming years.