Do you want to publish a course? Click here

Raman evidence for coupling of superconducting quasi-particles with a phonon and crystal field excitation in superconductor Ce0.6Y0.4FeAsO0.8F0.2

110   0   0.0 ( 0 )
 Added by Pradeep Khatri Mr
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report inelastic light scattering experiments on superconductor Ce0.6Y0.4FeAsO0.8F0.2 from 4K to 300K covering the superconducting transition temperature Tc ~ 48.6K. A strong evidence of the superconductivity induced phonon renormalization for the A1g phonon mode near 150 cm-1 associated with the Ce/Y vibrations is observed as reflected in the anomalous red-shift and decrease in the linewidth below Tc. Invoking the coupling of this mode with the superconducting gap, the superconducting gap (2) at zero temperature is estimated to be ~ 20 meV i.e the ratio is ~ 5, suggesting Ce0.6Y0.4FeAsO0.8F0.2 to belong to the class of strong coupling superconductors. In addition, the mode near 430 cm-1 associated with Ce3+ crystal field excitation also shows anomalous increase in its linewidth below Tc suggesting strong coupling between crystal field excitation and the superconducting quasi-particles. Our observations of two high frequency modes (S9 and S10) evidence the non-degenerate nature of Fe2+ dxz/yz orbitals suggesting the electronic nematicity in these systems.



rate research

Read More

Inelastic light scattering studies on single crystal of electron-doped Ca(Fe0.95Co0.05)2As2 superconductor, covering the tetragonal to orthorhombic structural transition as well as magnetic transition at TSM ~ 140 K and superconducting transition temperature Tc ~ 23 K, reveal evidence for superconductivity-induced phonon renormalization; in particular the phonon mode near 260 cm-1 shows hardening below Tc, signaling its coupling with the superconducting gap. All the three Raman active phonon modes show anomalous temperature dependence between room temperature and Tc i.e phonon frequency decreases with lowering temperature. Further, frequency of one of the modes shows a sudden change in temperature dependence at TSM. Using first-principles density functional theory-based calculations, we show that the low temperature phase (Tc < T < TSM) exhibits short-ranged stripe anti-ferromagnetic ordering, and estimate the spin-phonon couplings that are responsible for these phonon anomalies.
We use first-principles methods to study doped strong ferroelectrics (taking BaTiO$_3$ as a prototype). Here we find a strong coupling between itinerant electrons and soft polar phonons in doped BaTiO$_3$, contrary to Anderson/Blounts weakly coupled electron mechanism for ferroelectric-like metals. As a consequence, across a polar-to-centrosymmetric phase transition in doped BaTiO$_3$, the total electron-phonon coupling is increased to about 0.6 around the critical concentration, which is sufficient to induce phonon-mediated superconductivity of about 2 K. Lowering the crystal symmetry of doped BaTiO$_3$ by imposing epitaxial strain can further increase the superconducting temperature via a sizable coupling between itinerant electrons and acoustic phonons. Our work demonstrates a viable approach to modulating electron-phonon coupling and inducing phonon-mediated superconductivity in doped strong ferroelectrics and potentially in polar metals. Our results also show that the weakly coupled electron mechanism for ferroelectric-like metals is not necessarily present in doped strong ferroelectrics.
Topological superconductors (TSCs), with the capability to host Majorana bound states that can lead to non-Abelian statistics and application in quantum computation, have been one of the most intensively studied topics in condensed matter physics recently. Up to date, only a few compounds have been proposed as candidates of intrinsic TSCs, such as doped topological insulator CuxBi2Se3 and iron-based superconductor FeTe0.55Se0.45. Here, by carrying out synchrotron and laser based angle-resolved photoemission spectroscopy (ARPES), we systematically investigated the electronic structure of a quasi-1D superconductor TaSe3, and identified the nontrivial topological surface states. In addition, our scanning tunneling microscopy (STM) study revealed a clean cleaved surface with a persistent superconducting gap, proving it suitable for further investigation of potential Majorana modes. These results prove TaSe3 as a stoichiometric TSC candidate that is stable and exfoliable, therefore a great platform for the study of rich novel phenomena and application potentials.
84 - D. Novko , F. Caruso , C. Draxl 2019
The zone-center $E_{2g}$ modes play a crucial role in MgB$_2$, controlling the scattering mechanisms in the normal state as well the superconducting pairing. Here, we demonstrate via first-principles quantum-field theory calculations that, due to the anisotropic electron-phonon interaction, a $hot$-$phonon$ regime where the $E_{2g}$ phonons can achieve significantly larger effective populations than other modes, is triggered in MgB$_2$ by the interaction with an ultra-short laser pulse. Spectral signatures of this scenario in ultrafast pump-probe Raman spectroscopy are discussed in detail, revealing also a fundamental role of nonadiabatic processes in the optical features of the $E_{2g}$ mode.
191 - S. Kamba , V. Goian , V. Skoromets 2014
Infrared reflectivity spectra of cubic SrMnO$_{3}$ ceramics reveal 18 % stiffening of the lowest-frequency phonon below the antiferromagnetic phase transition occurring at T$_{N}$ = 233 K. Such a large temperature change of the polar phonon frequency is extraordinary and we attribute it to an exceptionally strong spin-phonon coupling in this material. This is consistent with our prediction from first principles calculations. Moreover, polar phonons become Raman active below T$_{N}$, although their activation is forbidden by symmetry in $Pmbar{3}m$ space group. This gives evidence that the cubic $Pmbar{3}m$ symmetry is locally broken below T$_{N}$ due to a strong magnetoelectric coupling. Multiphonon and multimagnon scattering is also observed in Raman spectra. Microwave and THz permittivity is strongly influenced by hopping electronic conductivity, which is caused by small non-stoichiometry of the sample. Thermoelectric measurements show room-temperature concentration of free carriers $n_{e}=$3.6 10$^{20}$ cm$^{-3}$ and the sample composition Sr$^{2+}$Mn$_{0.98}^{4+}$Mn$_{0.02}^{3+}$O$_{2.99}^{2-}$. The conductivity exhibits very unusual temperature behavior: THz conductivity increases on cooling, while the static conductivity markedly decreases on cooling. We attribute this to different conductivity of the ceramic grains and grain boundaries.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا