Do you want to publish a course? Click here

A large modulation of electron-phonon coupling and an emergent superconducting dome in doped strong ferroelectrics

167   0   0.0 ( 0 )
 Added by Jiaji Ma
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

We use first-principles methods to study doped strong ferroelectrics (taking BaTiO$_3$ as a prototype). Here we find a strong coupling between itinerant electrons and soft polar phonons in doped BaTiO$_3$, contrary to Anderson/Blounts weakly coupled electron mechanism for ferroelectric-like metals. As a consequence, across a polar-to-centrosymmetric phase transition in doped BaTiO$_3$, the total electron-phonon coupling is increased to about 0.6 around the critical concentration, which is sufficient to induce phonon-mediated superconductivity of about 2 K. Lowering the crystal symmetry of doped BaTiO$_3$ by imposing epitaxial strain can further increase the superconducting temperature via a sizable coupling between itinerant electrons and acoustic phonons. Our work demonstrates a viable approach to modulating electron-phonon coupling and inducing phonon-mediated superconductivity in doped strong ferroelectrics and potentially in polar metals. Our results also show that the weakly coupled electron mechanism for ferroelectric-like metals is not necessarily present in doped strong ferroelectrics.



rate research

Read More

84 - D. Novko , F. Caruso , C. Draxl 2019
The zone-center $E_{2g}$ modes play a crucial role in MgB$_2$, controlling the scattering mechanisms in the normal state as well the superconducting pairing. Here, we demonstrate via first-principles quantum-field theory calculations that, due to the anisotropic electron-phonon interaction, a $hot$-$phonon$ regime where the $E_{2g}$ phonons can achieve significantly larger effective populations than other modes, is triggered in MgB$_2$ by the interaction with an ultra-short laser pulse. Spectral signatures of this scenario in ultrafast pump-probe Raman spectroscopy are discussed in detail, revealing also a fundamental role of nonadiabatic processes in the optical features of the $E_{2g}$ mode.
Dirac semimetal PdTe2 single-crystal temperature-dependent ultrafast carrier and phonon dynamics were studied using ultrafast optical pump-probe spectroscopy. Two distinct carrier and coherent phonons relaxation processes were identified in the 5 K - 300 K range. Quantitative analysis revealed a fast relaxation process ({tau}_f) occurring on a subpicosecond time scale which originated from electron-phonon thermalization. This was followed by a slower relaxation process ({tau}_s) with a time scale of ~ 7-9.5 ps which originated from phonon-assisted electron-hole recombination. Two significant vibrational modes resolved at all measured temperatures and corresponded to Te atoms in-plane (E_g), and out-of-plane (A_1g), motion. As temperature increased both phonon modes softened markedly. A_1g mode frequency monotonically decreased as temperature increased. Its damping rate remained virtually unchanged. As expected, E_g decreased uniformly as temperatures rose. At temperatures above 80 K, there was insignificant change. Test results suggested that pure dephasing played an important role in the relaxation processes. PdTe2 phonon is thought responsible for its superconductive properties. Examining phonons behavior should improve the understanding of its complex superconductivity.
We report inelastic light scattering experiments on superconductor Ce0.6Y0.4FeAsO0.8F0.2 from 4K to 300K covering the superconducting transition temperature Tc ~ 48.6K. A strong evidence of the superconductivity induced phonon renormalization for the A1g phonon mode near 150 cm-1 associated with the Ce/Y vibrations is observed as reflected in the anomalous red-shift and decrease in the linewidth below Tc. Invoking the coupling of this mode with the superconducting gap, the superconducting gap (2) at zero temperature is estimated to be ~ 20 meV i.e the ratio is ~ 5, suggesting Ce0.6Y0.4FeAsO0.8F0.2 to belong to the class of strong coupling superconductors. In addition, the mode near 430 cm-1 associated with Ce3+ crystal field excitation also shows anomalous increase in its linewidth below Tc suggesting strong coupling between crystal field excitation and the superconducting quasi-particles. Our observations of two high frequency modes (S9 and S10) evidence the non-degenerate nature of Fe2+ dxz/yz orbitals suggesting the electronic nematicity in these systems.
We show that hole states in recently discovered single-layer InSe are strongly renormalized by the coupling with acoustic phonons. The coupling is enhanced significantly at moderate hole doping ($sim$10$^{13}$ cm$^{-2}$) due to hexagonal warping of the Fermi surface. While the system remains dynamically stable, its electron-phonon spectral function exhibits sharp low-energy resonances, leading to the formation of satellite quasiparticle states near the Fermi energy. Such many-body renormalization is predicted to have two important consequences. First, it significantly suppresses charge carrier mobility reaching $sim$1 cm$^2$V$^{-1}$s$^{-1}$ at $100$ K in a freestanding sample. Second, it gives rise to unusual temperature-dependent optical excitations in the midinfrared region. Relatively small charge carrier concentrations and realistic temperatures suggest that these excitations may be observed experimentally.
110 - J. Sjakste , N. Vast , M. Calandra 2015
We generalize the Wannier interpolation of the electron-phonon matrix elements to the case of polar-optical coupling in polar semiconductors. We verify our methodological developments against experiments, by calculating the widths of the electronic bands due to electron-phonon scattering in GaAs, the prototype polar semiconductor. The calculated widths are then used to estimate the broadenings of excitons at critical points in GaAs and the electron-phonon relaxation times of hot electrons. Our findings are in good agreement with available experimental data. Finally, we demonstrate that while the Frohlich interaction is the dominant scattering process for electrons/holes close to the valley minima, in agreement with low-field transport results, at higher energies, the intervalley scattering dominates the relaxation dynamics of hot electrons or holes. The capability of interpolating the polar-optical coupling opens new perspectives in the calculation of optical absorption and transport properties in semiconductors and thermoelectrics.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا