Do you want to publish a course? Click here

B, Bs, K and pi weak matrix elements with physical light quarks

119   0   0.0 ( 0 )
 Added by R Dowdall Dr
 Publication date 2013
  fields
and research's language is English




Ask ChatGPT about the research

Calculations of pseudoscalar decay constants of B, Bs, K and pi mesons with physical light quarks are presented. We use HISQ ensembles that include u,d,s and c sea quarks at three lattice spacings. HISQ is used for the valence light quarks and a radiatively improved NRQCD action for the heavy quarks. The key results are f_{B^+}=0.184(4)$ GeV, f_{B_s}=0.224(4) GeV, f_{B_s}/f_{B^+}=1.217(8), f_{K^+}/f_{pi^+}=1.1916(21), f_{K^+}=155.37(34) MeV, giving a significant improvement over previous results that required chiral extrapolation. We also calculate the Wilson flow scale w_0, finding w_0=0.1715(9) fm.



rate research

Read More

We present a numerical computation of matrix elements of DI=3/2 K-->pi pi decays by using Wilson fermions. In order to extrapolate to the physical point we work at unphysical kinematics and we resort to Chiral Perturbation Theory at the next-to-leading order. In particular we explain the case of the electroweak penguins O_{7,8} which can contribute significantly in the theoretical prediction of epsilon/epsilon. The study is done at beta=6.0 on a 24^3x64 lattice.
We discuss our ongoing effort to calculate form factors for several B and Bs semileptonic decays. We have recently completed the first unquenched calculation of the form factors for the rare decay B -> K ll. Extrapolated over the full kinematic range of q^2 via model-independent z expansion, these form factor results allow us to calculate several Standard Model observables. We compare with experiment (Belle, BABAR, CDF, and LHCb) where possible and make predictions elsewhere. We discuss preliminary results for Bs -> K l nu which, when combined with anticipated experimental results, will provide an alternative exclusive determination of |Vub|. We are exploring the possibility of using ratios of form factors for this decay with those for the unphysical decay Bs -> eta_s as a means of significantly reducing form factor errors. We are also studying B -> pi l nu, form factors for which are combined with experiment in the standard exclusive determination of |Vub|. Our simulations use NRQCD heavy and HISQ light valence quarks on the MILC 2+1 dynamical asqtad configurations.
126 - Yasumichi Aoki 2004
The nucleon decay matrix elements of three-quark operators are calculated with domain-wall fermions. Operators are renormalized non-perturbatively to match the MS bar (NDR) scheme at NLO. Quenched simulation studies involve both direct measurement of the matrix elements and the chiral Lagrangian parameters, alpha and beta. We also report on the dynamical quark effects on these parameters.
The exclusive semileptonic decay $B rightarrow pi ell u$ is a key process for the determination of the Cabibbo-Kobayashi-Maskawa matrix element $V_{ub}$ from the comparison of experimental rates as a function of $q^2$ with theoretically determined form factors. The sensitivity of the form factors to the $u/d$ quark mass has meant significant systematic uncertainties in lattice QCD calculations at unphysically heavy pion masses. Here we give the first lattice QCD calculations of this process for u/d quark masses going down to their physical values, calculating the $f_0$ form factor at zero recoil to 3%. We are able to resolve a long-standing controversy by showing that the soft-pion theorem result $f_0(q^2_{max}) = f_B/f_{pi}$ does hold as $m_{pi} rightarrow 0$. We use the Highly Improved Staggered Quark formalism for the light quarks and show that staggered chiral perturbation theory for the $m_{pi}$ dependence is almost identical to continuum chiral perturbation theory for $f_0$, $f_B$ and $f_{pi}$. We also give results for other processes such as $B_s rightarrow K ell u$.
122 - A. Bazavov , C. Bernard , C. DeTar 2013
A calculation of the ratio of leptonic decay constants f_{K^+}/f_{pi^+} makes possible a precise determination of the ratio of CKM matrix elements |V_{us}|/|V_{ud}| in the Standard Model, and places a stringent constraint on the scale of new physics that would lead to deviations from unitarity in the first row of the CKM matrix. We compute f_{K^+}/f_{pi^+} numerically in unquenched lattice QCD using gauge-field ensembles recently generated that include four flavors of dynamical quarks: up, down, strange, and charm. We analyze data at four lattice spacings a ~ 0.06, 0.09, 0.12, and 0.15 fm with simulated pion masses down to the physical value 135 MeV. We obtain f_{K^+}/f_{pi^+} = 1.1947(26)(37), where the errors are statistical and total systematic, respectively. This is our first physics result from our N_f = 2+1+1 ensembles, and the first calculation of f_{K^+}/f_{pi^+} from lattice-QCD simulations at the physical point. Our result is the most precise lattice-QCD determination of f_{K^+}/f_{pi^+}, with an error comparable to the current world average. When combined with experimental measurements of the leptonic branching fractions, it leads to a precise determination of |V_{us}|/|V_{ud}| = 0.2309(9)(4) where the errors are theoretical and experimental, respectively.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا