The nucleon decay matrix elements of three-quark operators are calculated with domain-wall fermions. Operators are renormalized non-perturbatively to match the MS bar (NDR) scheme at NLO. Quenched simulation studies involve both direct measurement of the matrix elements and the chiral Lagrangian parameters, alpha and beta. We also report on the dynamical quark effects on these parameters.
Hadronic matrix elements of operators relevant to nucleon decay in grand unified theories are calculated numerically using lattice QCD. In this context, the domain-wall fermion formulation, combined with non-perturbative renormalization, is used for the first time. These techniques bring reduction of a large fraction of the systematic error from the finite lattice spacing. Our main effort is devoted to a calculation performed in the quenched approximation, where the direct calculation of the nucleon to pseudoscalar matrix elements, as well as the indirect estimate of them from the nucleon to vacuum matrix elements, are performed. First results, using two flavors of dynamical domain-wall quarks for the nucleon to vacuum matrix elements are also presented to address the systematic error of quenching, which appears to be small compared to the other errors. Our results suggest that the representative value for the low energy constants from the nucleon to vacuum matrix elements are given as |alpha| simeq |beta| simeq 0.01 GeV^3. For a more reliable estimate of the physical low energy matrix elements, it is better to use the relevant form factors calculated in the direct method. The direct method tends to give smaller value of the form factors, compared to the indirect one, thus enhancing the proton life-time; indeed for the pi^0 final state the difference between the two methods is quite appreciable.
We report on the nucleon decay matrix elements with domain-wall fermions in quenched approximation. Results from direct and indirect method are compared with a focus on the process of a proton decaying to a pion and a lepton. We discuss the renormalization necessary for the matching to the continuum theory. Preliminary results for the renormalized chiral lagrangian parameters are presented.
We present a model-independent calculation of hadron matrix elements for all dimension-six operators associated with baryon number violating processes using lattice QCD. The calculation is performed with the Wilson quark action in the quenched approximation at $beta=6/g^2=6.0$ on a $28^2times 48times 80$ lattice. Our results cover all the matrix elements required to estimate the partial lifetimes of (proton,neutron)$to$($pi,K,eta$) +(${bar u},e^+,mu^+$) decay modes. We point out the necessity of disentangling two form factors that contribute to the matrix element; previous calculations did not make the separation, which led to an underestimate of the physical matrix elements. With a correct separation, we find that the matrix elements have values 3-5 times larger than the smallest estimates employed in phenomenological analyses of the nucleon decays, which could give strong constraints on several GUT models. We also find that the values of the matrix elements are comparable with the tree-level predictions of chiral lagrangian.
We report on our study of the B to D^(*) ell u semileptonic decays at zero and nonzero recoils in 2+1 flavor QCD. The Mobius domain-wall action is employed for light, charm and bottom quarks at lattice cutoffs 1/a = 2.5 and 3.6 GeV. We take bottom quark masses up to approx 2.4 times the physical charm mass to control discretization effects. The pion mass is as low as M_pi sim 310 MeV. We present our preliminary results for the relevant form factors and discuss the violation of heavy quark symmetry, which is a recent important isuue on the long-standing tension in the Cabibbo-Kobayashi-Maskawa matrix element |V_{cb}| between the exclusive and inclusive decays.
We calculate the B-meson decay constants f_B, f_Bs, and their ratio in unquenched lattice QCD using domain-wall light quarks and relativistic b-quarks. We use gauge-field ensembles generated by the RBC and UKQCD collaborations using the domain-wall fermion action and Iwasaki gauge action with three flavors of light dynamical quarks. We analyze data at two lattice spacings of a ~ 0.11, 0.086 fm with unitary pion masses as light as M_pi ~ 290 MeV; this enables us to control the extrapolation to the physical light-quark masses and continuum. For the b-quarks we use the anisotropic clover action with the relativistic heavy-quark interpretation, such that discretization errors from the heavy-quark action are of the same size as from the light-quark sector. We renormalize the lattice heavy-light axial-vector current using a mostly nonperturbative method in which we compute the bulk of the matching factor nonperturbatively, with a small correction, that is close to unity, in lattice perturbation theory. We also improve the lattice heavy-light current through O(alpha_s a). We extrapolate our results to the physical light-quark masses and continuum using SU(2) heavy-meson chiral perturbation theory, and provide a complete systematic error budget. We obtain f_B0 = 199.5(12.6) MeV, f_B+ = 195.6(14.9) MeV, f_Bs = 235.4(12.2) MeV, f_Bs/f_B0 = 1.197(50), and f_Bs/f_B+ = 1.223(71), where the errors are statistical and total systematic added in quadrature. These results are in good agreement with other published results and provide an important independent cross check of other three-flavor determinations of $B$-meson decay constants using staggered light quarks.