Do you want to publish a course? Click here

Evidence of unconventional low-frequency dynamics in the normal phase of Ba(Fe1-xRhx)2As2 iron-based supercondutors

344   0   0.0 ( 0 )
 Added by Lucia Bossoni
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

This work presents 75As NMR spin echo decay rate (1/T2) measurements in Ba(Fe1-xRhx)2As2 superconductors, for 0.041 < x < 0.094. It is shown that 1/T2 increases upon cooling, in the normal phase, suggesting the onset of an unconventional very low-frequency activated dynamic. The correlation times of the fluctuations and their energy barriers are derived. The motion is favored at large Rh content, while it is hindered by the application of a magnetic field perpendicular to the FeAs layers. The same dynamic is observed in the spin-lattice relaxation rate, in a quantitatively consistent manner. These results are discussed in the light of nematic fluctuations involving domain wall motion. The analogies with the behaviour observed in the cuprates are also outlined.



rate research

Read More

We investigated the elastic properties of the iron-based superconductor Ba(Fe1-xCox)2As2 with eight Co concentrations. The elastic constant C66 shows large elastic softening associated with the structural phase transition. The C66 was analyzed base on localized and itinerant pictures of Fe-3d electrons, which shows the strong electron-lattice coupling and a possible mass enhancement in this system. The results resemble those of unconventional superconductors, where the properties of the system are governed by the quantum fluctuations associated with the zero-temperature critical point of the long-range order; namely, the quantum critical point (QCP). In this system, the inverse of C66 behaves just like the magnetic susceptibility in the magnetic QCP systems. While the QCPs of these existing superconductors are all ascribed to antiferromagnetism, our systematic studies on the canonical iron-based superconductor Ba(Fe1-xCox)2As2 have revealed that there is a signature of structural quantum criticality in this material, which is so far without precedent. The elastic constant anomaly is suggested to concern with the emergence of superconductivity. These results highlight the strong electron-lattice coupling and effect of the band in this system, thus challenging the prevailing scenarios that focus on the role of the iron 3d-orbitals.
The electronic structure of electron doped iron-arsenide superconductors Ba(Fe1- xCox)2As2 has been measured with Angle Resolved Photoemission Spectroscopy. The data reveal a marked photon energy dependence of points in momentum space where the bands cross the Fermi energy, a distinctive and direct signature of three-dimensionality in the Fermi surface topology. By providing a unique example of high temperature superconductivity hosted in layered compounds with three-dimensional electronic structure, these findings suggest that the iron-arsenides are unique materials, quite different from the cuprates high temperature superconductors.
We present nuclear magnetic resonance evidence that very slow ($leq 1$ MHz) spin fluctuations persist into the overdoped regime of Ba(Fe$_{1-x}$Rh$_{x}$)$_2$As$_2$ superconductors. Measurements of the $^{75}$As spin echo decay rate, obtained both with Hahn Echo and Carr Purcell Meiboom Gill pulse sequences, show that the slowing down of spin fluctuations can be described by short-range diffusive dynamics, likely involving domain walls motions separating $(pi/a,0)$ from $(0,pi/a)$ correlated regions. This slowing down of the fluctuations is weakly sensitive to the external magnetic field and, although fading away with doping, it extends deeply into the overdoped regime.
Most iron-based superconductors are characterized by the s+- symmetry of their order parameter, and are expected to go through a transition to the s++ state if enough disorder is introduced. We previously reported the observation of this transition in Ba(Fe1-xRhx)2As2 through a study of the disorder dependence of the critical temperature and low-temperature London penetration depth. In this paper we report on the analysis of the electrodynamic response of the same sample across the transition and we identify peculiarities in the behaviour of the surface resistance and normal conductivity, that can be considered as traces of the transition itself.
The evolution of 75As NMR parameters with composition and temperature was probed in the Ba(Fe1-xRux)2As2 system where Fe is replaced by isovalent Ru. While the Ru-end member was found to be a conventional Fermi liquid, the composition (x=0.5) corresponding to the highest Tc (20K) in this system shows an upturn in 75As 1/T1T below about 80 K evidencing the presence of antiferromagnetic (AFM) fluctuations. These results are similar to those obtained in another system with isovalent substitution BaFe2(As1-xPx)2 [Y. Nakai, T. Iye, S. Kitagawa, K. Ishida, H. Ikeda, S. Kasahara, H. Shishido, T. Shibauchi, Y. Matsuda, and T. Terashima, Phys. Rev. Lett. 105, 107003 (2010)] and point to the possible role of AFM fluctuations in driving superconductivity.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا