Do you want to publish a course? Click here

Electrodynamic response of Ba(Fe1-xRhx)2As2 across the s+- to s++ order parameter transition

94   0   0.0 ( 0 )
 Added by Daniele Torsello
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

Most iron-based superconductors are characterized by the s+- symmetry of their order parameter, and are expected to go through a transition to the s++ state if enough disorder is introduced. We previously reported the observation of this transition in Ba(Fe1-xRhx)2As2 through a study of the disorder dependence of the critical temperature and low-temperature London penetration depth. In this paper we report on the analysis of the electrodynamic response of the same sample across the transition and we identify peculiarities in the behaviour of the surface resistance and normal conductivity, that can be considered as traces of the transition itself.



rate research

Read More

We present nuclear magnetic resonance evidence that very slow ($leq 1$ MHz) spin fluctuations persist into the overdoped regime of Ba(Fe$_{1-x}$Rh$_{x}$)$_2$As$_2$ superconductors. Measurements of the $^{75}$As spin echo decay rate, obtained both with Hahn Echo and Carr Purcell Meiboom Gill pulse sequences, show that the slowing down of spin fluctuations can be described by short-range diffusive dynamics, likely involving domain walls motions separating $(pi/a,0)$ from $(0,pi/a)$ correlated regions. This slowing down of the fluctuations is weakly sensitive to the external magnetic field and, although fading away with doping, it extends deeply into the overdoped regime.
This work presents 75As NMR spin echo decay rate (1/T2) measurements in Ba(Fe1-xRhx)2As2 superconductors, for 0.041 < x < 0.094. It is shown that 1/T2 increases upon cooling, in the normal phase, suggesting the onset of an unconventional very low-frequency activated dynamic. The correlation times of the fluctuations and their energy barriers are derived. The motion is favored at large Rh content, while it is hindered by the application of a magnetic field perpendicular to the FeAs layers. The same dynamic is observed in the spin-lattice relaxation rate, in a quantitatively consistent manner. These results are discussed in the light of nematic fluctuations involving domain wall motion. The analogies with the behaviour observed in the cuprates are also outlined.
205 - P. Marsik , C.N. Wang , M. Roessle 2013
We studied the doping and temperature (T) dependence of the infrared (IR) response of Ba(Fe1-xCox)2As2 single crystals. We show that a weak band around 1000 cm-1, that was previously interpreted in terms of interaction of the charge carriers with magnetic excitations or of a pseudogap, is rather related to low-energy interband transitions. Specifically, we show that this band exhibits a similar doping and T-dependence as the hole pockets seen by angle resolved photoemission spectroscopy (ARPES). Notably, we find that it vanishes as a function of doping near the critical point where superconductivity is suppressed in the overdoped regime. Our IR data thus provide bulk specific information (complementary to the surface sensitive ARPES) for a Lifshitz transition. Our IR data also reveal a second low-energy band around 2300 cm-1 which further emphasizes the necessity to consider the multiband nature of these iron arsenides in the analysis of the optical response.
138 - S. Lee , J. Jiang , J. D. Weiss 2009
We show that despite the low anisotropy, strong vortex pinning and high irreversibility field Hirr close to the upper critical field Hc2 of Ba(Fe1-xCox)2As2, the critical current density Jgb across [001] tilt grain boundaries (GBs) of thin film Ba(Fe1-xCox)2As2 bicrystals is strongly depressed, similar to high-Tc cuprates. Our results suggest that weak-linked GBs are characteristic of both cuprates and pnictides because of competing orders, low carrier density, and unconventional pairing symmetry.
The angular-dependent critical current density, Jc(theta), and the upper critical field, Hc2(theta), of epitaxial Ba(Fe1-xCox)2As2 thin films have been investigated. No Jc(theta) peaks for H || c were observed regardless of temperatures and magnetic fields. In contrast, Jc(theta) showed a broad maximum at theta=90 degree, which arises from intrinsic pinning. All data except at theta=90 degree can be scaled by the Blatter plot. Hc2(theta) near Tc follows the anisotropic Ginzburg-Landau expression. The mass anisotropy increased from 1.5 to 2 with increasing temperature, which is an evidence for multi-band superconductivity.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا