Do you want to publish a course? Click here

Evidence for Three-Dimensionality in the Fermi Surface Topology of Layered Electron Doped Ba(Fe1-XCox)2As2 Iron Superconductors

335   0   0.0 ( 0 )
 Added by Norman Mannella
 Publication date 2009
  fields Physics
and research's language is English




Ask ChatGPT about the research

The electronic structure of electron doped iron-arsenide superconductors Ba(Fe1- xCox)2As2 has been measured with Angle Resolved Photoemission Spectroscopy. The data reveal a marked photon energy dependence of points in momentum space where the bands cross the Fermi energy, a distinctive and direct signature of three-dimensionality in the Fermi surface topology. By providing a unique example of high temperature superconductivity hosted in layered compounds with three-dimensional electronic structure, these findings suggest that the iron-arsenides are unique materials, quite different from the cuprates high temperature superconductors.



rate research

Read More

We investigated the elastic properties of the iron-based superconductor Ba(Fe1-xCox)2As2 with eight Co concentrations. The elastic constant C66 shows large elastic softening associated with the structural phase transition. The C66 was analyzed base on localized and itinerant pictures of Fe-3d electrons, which shows the strong electron-lattice coupling and a possible mass enhancement in this system. The results resemble those of unconventional superconductors, where the properties of the system are governed by the quantum fluctuations associated with the zero-temperature critical point of the long-range order; namely, the quantum critical point (QCP). In this system, the inverse of C66 behaves just like the magnetic susceptibility in the magnetic QCP systems. While the QCPs of these existing superconductors are all ascribed to antiferromagnetism, our systematic studies on the canonical iron-based superconductor Ba(Fe1-xCox)2As2 have revealed that there is a signature of structural quantum criticality in this material, which is so far without precedent. The elastic constant anomaly is suggested to concern with the emergence of superconductivity. These results highlight the strong electron-lattice coupling and effect of the band in this system, thus challenging the prevailing scenarios that focus on the role of the iron 3d-orbitals.
The orbital symmetries of electron doped iron-arsenide superconductors Ba(Fe1-xCox)2As2 have been measured with x-ray absorption spectroscopy. The data reveal signatures of Fe d electron itinerancy, weak electronic correlations, and a high degree of Fe-As hybridization related to the bonding topology of the Fe dxz+yz states, which are found to contribute substantially at the Fermi level. The energies and detailed orbital character of Fe and As derived unoccupied s and d states are found to be in remarkably good agreement with the predictions of standard density functional theory.
We report muon spin rotation ($mu$SR) measurements of single crystal Ba(Fe$_{1-x}$Co$_x$)$_2$As$_2$ and Sr(Fe$_{1-x}$Co$_x$)$_2$As$_2$. From measurements of the magnetic field penetration depth $lambda$ we find that for optimally- and over-doped samples, $1/lambda(Tto 0)^2$ varies monotonically with the superconducting transition temperature T$_{rm C}$. Within the superconducting state we observe a positive shift in the muon precession signal, likely indicating that the applied field induces an internal magnetic field. The size of the induced field decreases with increasing doping but is present for all Co concentrations studied.
75As NMR and susceptiblity were measured in a Ba(Fe1-xCox)2As2 single crystal for x=6% for various field H values and orientations. The sharpness of the superconducting and magnetic transitions demonstrates a homogeneity of the Co doping x better than +-0.25%. On the nanometer scale, the paramagnetic part of the NMR spectra is found very anisotropic and very narrow for H//ab which allows to rule out the interpretation of Ref.[6] in terms of strong Co induced electronic inhomogeneities. We propose that a distribution of hyperfine couplings and chemical shifts due to the Co effect on its nearest As explains the observed linewidths and relaxations. All these measurements show that Co substitution induces a very homogeneous electronic doping in BaFe2As2, from nano to micrometer lengthscales, on the contrary to the K doping.
We probe the real space electronic response to a local magnetic impurity in isovalent and heterovalent doped BaFe2As2 (122) using Nuclear Magnetic Resonance (NMR). The local moments carried by Mn impurities doped into Ba(Fe1-xCox)2As2(Co-122) and BaFe(As1-xPx)2(P-122) at optimal doping induce a spin polarization in the vicinity of the impurity. The amplitude, shape and extension of this polarisation is given by the real part of the susceptibility chi(r) of FeAs layers, and is consequently related to the nature and strength of the electronic correlations present in the system. We study this polarisation using 75As NMR in Co-122 and both 75As and 31P NMR in P-122. The NMR spectra of Mn-doped materials is made of two essential features. First is a satellite line associated with nuclei located as nearest neighbor of Mn impurities. The analysis of the temperature dependence of the shift of this satellite line shows that Mn local moments behave as isolated Curie moments. The second feature is a temperature dependent broadening of the central line. We show that the broadening of the central line follows the susceptibility of Mn local moments, as expected from typical RKKY-like interactions. This demonstrates that the susceptibility chi(r) of FeAs layers does not make significant contribution to the temperature dependent broadening of the central line. chi(r) is consequently only weakly temperature dependent in optimally doped Co-122 and P-122. This behaviour is in contrast with that of strongly correlated materials such as underdoped cuprate high-Tc superconductors where the central line broadens faster than the impurity susceptibility grows, because of the development of strong magnetic correlations when T is lowered. Moreover, the FeAs layer susceptibility is found quantitatively similar in both heterovalent doped and isolvalent doped BaFe2As2.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا