Do you want to publish a course? Click here

Information filtering via hybridization of similarity preferential diffusion processes

159   0   0.0 ( 0 )
 Added by An Zeng
 Publication date 2013
and research's language is English




Ask ChatGPT about the research

The recommender system is one of the most promising ways to address the information overload problem in online systems. Based on the personal historical record, the recommender system can find interesting and relevant objects for the user within a huge information space. Many physical processes such as the mass diffusion and heat conduction have been applied to design the recommendation algorithms. The hybridization of these two algorithms has been shown to provide both accurate and diverse recommendation results. In this paper, we proposed two similarity preferential diffusion processes. Extensive experimental analyses on two benchmark data sets demonstrate that both recommendation and accuracy and diversity are improved duet to the similarity preference in the diffusion. The hybridization of the similarity preferential diffusion processes is shown to significantly outperform the state-of-art recommendation algorithm. Finally, our analysis on network sparsity show that there is significant difference between dense and sparse system, indicating that all the former conclusions on recommendation in the literature should be reexamined in sparse system.



rate research

Read More

A key challenge of the collaborative filtering (CF) information filtering is how to obtain the reliable and accurate results with the help of peers recommendation. Since the similarities from small-degree users to large-degree users would be larger than the ones opposite direction, the large-degree users selections are recommended extensively by the traditional second-order CF algorithms. By considering the users similarity direction and the second-order correlations to depress the influence of mainstream preferences, we present the directed second-order CF (HDCF) algorithm specifically to address the challenge of accuracy and diversity of the CF algorithm. The numerical results for two benchmark data sets, MovieLens and Netflix, show that the accuracy of the new algorithm outperforms the state-of-the-art CF algorithms. Comparing with the CF algorithm based on random-walks proposed in the Ref.7, the average ranking score could reach 0.0767 and 0.0402, which is enhanced by 27.3% and 19.1% for MovieLens and Netflix respectively. In addition, the diversity, precision and recall are also enhanced greatly. Without relying on any context-specific information, tuning the similarity direction of CF algorithms could obtain accurate and diverse recommendations. This work suggests that the user similarity direction is an important factor to improve the personalized recommendation performance.
Social networks have become ubiquitous in our daily life, as such it has attracted great research interests recently. A key challenge is that it is of extremely large-scale with tremendous information flow, creating the phenomenon of Big Data. Under such a circumstance, understanding information diffusion over social networks has become an important research issue. Most of the existing works on information diffusion analysis are based on either network structure modeling or empirical approach with dataset mining. However, the information diffusion is also heavily influenced by network users decisions, actions and their socio-economic connections, which is generally ignored in existing works. In this paper, we propose an evolutionary game theoretic framework to model the dynamic information diffusion process in social networks. Specifically, we analyze the framework in uniform degree and non-uniform degree networks and derive the closed-form expressions of the evolutionary stable network states. Moreover, the information diffusion over two special networks, ErdH{o}s-Renyi random network and the Barabasi-Albert scale-free network, are also highlighted. To verify our theoretical analysis, we conduct experiments by using both synthetic networks and real-world Facebook network, as well as real-world information spreading dataset of Twitter and Memetracker. Experiments shows that the proposed game theoretic framework is effective and practical in modeling the social network users information forwarding behaviors.
73 - Ruiwu Niu , Xiaoqun Wu , Ju-an Lu 2018
This paper mainly discusses the diffusion on complex networks with time-varying couplings. We propose a model to describe the adaptive diffusion process of local topological and dynamical information, and find that the Barabasi-Albert scale-free network (BA network) is beneficial to the diffusion and leads nodes to arrive at a larger state value than other networks do. The ability of diffusion for a node is related to its own degree. Specifically, nodes with smaller degrees are more likely to change their states and reach larger values, while those with larger degrees tend to stick to their original states. We introduce state entropy to analyze the thermodynamic mechanism of the diffusion process, and interestingly find that this kind of diffusion process is a minimization process of state entropy. We use the inequality constrained optimization method to reveal the restriction function of the minimization and find that it has the same form as the Gibbs free energy. The thermodynamical concept allows us to understand dynamical processes on complex networks from a brand-new perspective. The result provides a convenient means of optimizing relevant dynamical processes on practical circuits as well as related complex systems.
120 - Duo Sun , Tao Zhou , Jian-Guo Liu 2009
In this Brief Report, we propose a new index of user similarity, namely the transferring similarity, which involves all high-order similarities between users. Accordingly, we design a modified collaborative filtering algorithm, which provides remarkably higher accurate predictions than the standard collaborative filtering. More interestingly, we find that the algorithmic performance will approach its optimal value when the parameter, contained in the definition of transferring similarity, gets close to its critical value, before which the series expansion of transferring similarity is convergent and after which it is divergent. Our study is complementary to the one reported in [E. A. Leicht, P. Holme, and M. E. J. Newman, Phys. Rev. E {bf 73} 026120 (2006)], and is relevant to the missing link prediction problem.
341 - Yasuhiro Hashimoto 2015
In the Yule-Simon process, selection of words follows the preferential attachment mechanism, resulting in the power-law growth in the cumulative number of individual word occurrences. This is derived using mean-field approximation, assuming a continuum limit of both the time and number of word occurrences. However, time and word occurrences are inherently discrete in the process, and it is natural to assume that the cumulative number of word occurrences has a certain fluctuation around the average behavior predicted by the mean-field approximation. We derive the exact and approximate forms of the probability distribution of such fluctuation analytically and confirm that those probability distributions are well supported by the numerical experiments.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا