Do you want to publish a course? Click here

Evolutionary Information Diffusion over Social Networks

277   0   0.0 ( 0 )
 Added by Chunxiao Jiang
 Publication date 2013
and research's language is English




Ask ChatGPT about the research

Social networks have become ubiquitous in our daily life, as such it has attracted great research interests recently. A key challenge is that it is of extremely large-scale with tremendous information flow, creating the phenomenon of Big Data. Under such a circumstance, understanding information diffusion over social networks has become an important research issue. Most of the existing works on information diffusion analysis are based on either network structure modeling or empirical approach with dataset mining. However, the information diffusion is also heavily influenced by network users decisions, actions and their socio-economic connections, which is generally ignored in existing works. In this paper, we propose an evolutionary game theoretic framework to model the dynamic information diffusion process in social networks. Specifically, we analyze the framework in uniform degree and non-uniform degree networks and derive the closed-form expressions of the evolutionary stable network states. Moreover, the information diffusion over two special networks, ErdH{o}s-Renyi random network and the Barabasi-Albert scale-free network, are also highlighted. To verify our theoretical analysis, we conduct experiments by using both synthetic networks and real-world Facebook network, as well as real-world information spreading dataset of Twitter and Memetracker. Experiments shows that the proposed game theoretic framework is effective and practical in modeling the social network users information forwarding behaviors.



rate research

Read More

Current social networks are of extremely large-scale generating tremendous information flows at every moment. How information diffuse over social networks has attracted much attention from both industry and academics. Most of the existing works on information diffusion analysis are based on machine learning methods focusing on social network structure analysis and empirical data mining. However, the dynamics of information diffusion, which are heavily influenced by network users decisions, actions and their socio-economic interactions, is generally ignored by most of existing works. In this paper, we propose an evolutionary game theoretic framework to model the dynamic information diffusion process in social networks. Specifically, we derive the information diffusion dynamics in complete networks, uniform degree and non-uniform degree networks, with the highlight of two special networks, ErdH{o}s-Renyi random network and the Barabasi-Albert scale-free network. We find that the dynamics of information diffusion over these three kinds of networks are scale-free and the same with each other when the network scale is sufficiently large. To verify our theoretical analysis, we perform simulations for the information diffusion over synthetic networks and real-world Facebook networks. Moreover, we also conduct experiment on Twitter hashtags dataset, which shows that the proposed game theoretic model can well fit and predict the information diffusion over real social networks.
443 - Xiaochuan Zhao , Sheng-Yuan Tu , 2011
Adaptive networks rely on in-network and collaborative processing among distributed agents to deliver enhanced performance in estimation and inference tasks. Information is exchanged among the nodes, usually over noisy links. The combination weights that are used by the nodes to fuse information from their neighbors play a critical role in influencing the adaptation and tracking abilities of the network. This paper first investigates the mean-square performance of general adaptive diffusion algorithms in the presence of various sources of imperfect information exchanges, quantization errors, and model non-stationarities. Among other results, the analysis reveals that link noise over the regression data modifies the dynamics of the network evolution in a distinct way, and leads to biased estimates in steady-state. The analysis also reveals how the network mean-square performance is dependent on the combination weights. We use these observations to show how the combination weights can be optimized and adapted. Simulation results illustrate the theoretical findings and match well with theory.
In this paper, we investigate stable matching in structured networks. Consider case of matching in social networks where candidates are not fully connected. A candidate on one side of the market gets acquaintance with which one on the heterogeneous side depends on the structured network. We explore four well-used structures of networks and define the social circle by the distance between each candidate. When matching within social circle, we have equilibrium distinguishes from each other since each social networks topology differs. Equilibrium changes with the change on topology of each network and it always converges to the same stable outcome as complete information algorithm if there is no block to reach anyone in agents social circle.
We propose a relaxation of common belief called factional belief that is suitable for the analysis of strategic coordination on social networks. We show how this definition can be used to analyze revolt games on general graphs, including by giving an efficient algorithm that characterizes a structural result about the possible equilibria of such games. This extends prior work on common knowledge and common belief, which has been too restrictive for use in understanding strategic coordination and cooperation in social network settings.
Recently, we introduced in arXiv:1105.2434 a model for product adoption in social networks with multiple products, where the agents, influenced by their neighbours, can adopt one out of several alternatives. We identify and analyze here four types of paradoxes that can arise in these networks. To this end, we use social network games that we recently introduced in arxiv:1202.2209. These paradoxes shed light on possible inefficiencies arising when one modifies the sets of products available to the agents forming a social network. One of the paradoxes corresponds to the well-known Braess paradox in congestion games and shows that by adding more choices to a node, the network may end up in a situation that is worse for everybody. We exhibit a dual version of this, where removing available choices from someone can eventually make everybody better off. The other paradoxes that we identify show that by adding or removing a product from the choice set of some node may lead to permanent instability. Finally, we also identify conditions under which some of these paradoxes cannot arise.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا