Do you want to publish a course? Click here

Quasinormal modes of a two-dimensional black hole

147   0   0.0 ( 0 )
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

For a two-dimensional black hole we determine the quasinormal frequencies of the Klein-Gordon and Dirac fields. In contrast to the well known examples whose spectrum of quasinormal frequencies is discrete, for this black hole we find a continuous spectrum of quasinormal frequencies, but there are unstable quasinormal modes. In the framework of the Hod and Maggiore proposals we also discuss the consequences of these results on the form of the entropy spectrum for the two-dimensional black hole.



rate research

Read More

We study the quasinormal modes of fermionic perturbations for an asymptotically Lifshitz black hole in 4-dimensions with dynamical exponent z=2 and plane topology for the transverse section, and we find analytically and numerically the quasinormal modes for massless fermionic fields by using the improved asymptotic iteration method and the Horowitz-Hubeny method. The quasinormal frequencies are purely imaginary and negative, which guarantees the stability of these black holes under massless fermionic field perturbations. Remarkably, both numerical methods yield consistent results; i.e., both methods converge to the exact quasinormal frequencies; however, the improved asymptotic iteration method converges in a fewer number of iterations. Also, we find analytically the quasinormal modes for massive fermionic fields for the mode with lowest angular momentum. In this case, the quasinormal frequencies are purely imaginary and negative, which guarantees the stability of these black holes under fermionic field perturbations. Moreover, we show that the lowest quasinormal frequencies have real and imaginary parts for the mode with higher angular momentum by using the improved asymptotic iteration method.
The quasinormal modes (QNMs) of a regular black hole with charge are calculated in the eikonal approximation. In the eikonal limit the QNMs of black hole are determined by the parameters of the unstable circular null geodesics. The behaviors of QNMs are compared with QNMs of Reisner-Nordstr{o}m black hole, it is done by fixing some of the parameters that characterize the black holes and varying another. We observed that the parameter that is related one effective cosmological constant at small distances , determines the behaviors of the QNMs of regular black hole with charge.
We study charged fermionic perturbations in the background of two-dimensional charged Dilatonic black holes, and we present the exact Dirac quasinormal modes. Also, we study the stability of these black holes under charged fermionic perturbations.
Modelling of gravitational waves from binary black hole inspiral has played an important role in the recent observations of such signals. The late-stage ringdown phase of the gravitational waveform is often associated with the null particle orbit (light ring) of the black hole spacetime. With simple models we show that this link between the light ring and spacetime ringing is based more on the history of specific models than on an actual constraining relationship. We also show, in particular, that a better understanding of the dissociation of the two may be relevant to the astrophysically interesting case of rotating (Kerr) black holes.
We study scalar perturbations for a four-dimensional asymptotically Lifshitz black hole in conformal gravity with dynamical exponent z=0, and spherical topology for the transverse section, and we find analytically and numerically the quasinormal modes for scalar fields for some special cases. Then, we study the stability of these black holes under scalar field perturbations and the greybody factors.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا