No Arabic abstract
This Letter of Intent outlines a proposal to build a large, yet cost-effective, 100 kton fiducial mass water Cherenkov detector that will initially run in the NuMI beam line. The CHIPS detector (CHerenkov detector In Mine PitS) will be deployed in a flooded mine pit, removing the necessity and expense of a substantial external structure capable of supporting a large detector mass. There are a number of mine pits in northern Minnesota along the NuMI beam that could be used to deploy such a detector. In particular, the Wentworth Pit 2W is at the ideal off-axis angle to contribute to the measurement of the CP violating phase. The detector is designed so that it can be moved to a mine pit in the LBNE beam line once that becomes operational.
This Letter of Intent describes LUXE (Laser Und XFEL Experiment), an experiment that aims to use the high-quality and high-energy electron beam of the European XFEL and a powerful laser. The scientific objective of the experiment is to study quantum electrodynamics processes in the regime of strong fields. High-energy electrons, accelerated by the European XFEL linear accelerator, and high-energy photons, produced via Bremsstrahlung of those beam electrons, colliding with a laser beam shall experience an electric field up to three times larger than the Schwinger critical field (the field at which the vacuum itself is expected to become unstable and spark with spontaneous creation of electron-positron pairs) and access a new regime of quantum physics. The processes to be investigated, which include nonlinear Compton scattering and nonlinear Breit-Wheeler pair production, are relevant to a variety of phenomena in Nature, e.g. in the areas of astrophysics and collider physics and complement recent results in atomic physics. The setup requires in particular the extraction of a minute fraction of the electron bunches from the European XFEL accelerator, the installation of a powerful laser with sophisticated diagnostics, and an array of precision detectors optimised to measure electrons, positrons and photons. Physics sensitivity projections based on simulations are also provided.
As long-baseline neutrino experiments enter the precision era, the difficulties associated with understanding neutrino interaction cross sections on atomic nuclei are expected to limit experimental sensitivities to oscillation parameters. In particular, the ability to relate experimental observables to neutrino energy in previous experiments has relied solely on theoretical models of neutrino-nucleus interactions, which currently suffer from very large theoretical uncertainties. By observing charged current $ u_mu$ interactions over a continuous range of off-axis angles from 1 to 4 degrees, the nuPRISM water Cherenkov detector can provide a direct measurement of the far detector lepton kinematics for any given set of oscillation parameters, which largely removes neutrino interaction modeling uncertainties from T2K oscillation measurements. This naturally provides a direct constraint on the relationship between lepton kinematics and neutrino energy. In addition, nuPRISM is a sensitive probe of sterile neutrino oscillations with multiple energy spectra, which provides unique constraints on possible background-related explanations of the MiniBooNE anomaly. Finally, high-precision measurements of neutrino cross sections on water are possible, including $ u_e$ measurements and the first ever measurements of neutral current interactions as a function of neutrino energy. The nuPRISM detector also benefits the proposed Hyper-Kamiokande project. A demonstration that neutrino interaction uncertainties can be controlled will be important to understanding the physics reach of Hyper-K. In addition, nuPRISM will provide an easily accessible prototype detector for many of the new hardware components currently under consideration for Hyper-K. The following document presents the configuration, physics impact, and preliminary cost estimates for a nuPRISM detector in the J-PARC neutrino beamline.
Neutron tagging in Gadolinium-doped water may play a significant role in reducing backgrounds from atmospheric neutrinos in next generation proton-decay searches using megaton-scale Water Cherenkov detectors. Similar techniques might also be useful in the detection of supernova neutrinos. Accurate determination of neutron tagging efficiencies will require a detailed understanding of the number of neutrons produced by neutrino interactions in water as a function of momentum transferred. We propose the Atmospheric Neutrino Neutron Interaction Experiment (ANNIE), designed to measure the neutron yield of atmospheric neutrino interactions in gadolinium-doped water. An innovative aspect of the ANNIE design is the use of precision timing to localize interaction vertices in the small fiducial volume of the detector. We propose to achieve this by using early production of LAPPDs (Large Area Picosecond Photodetectors). This experiment will be a first application of these devices demonstrating their feasibility for Water Cherenkov neutrino detectors.
In this LOI we propose a dedicated experiment that would detect milli-charged particles produced by pp collisions at LHC Point 5. The experiment would be installed during LS2 in the vestigial drainage gallery above UXC and would not interfere with CMS operations. With 300 fb$^{-1}$ of integrated luminosity, sensitivity to a particle with charge $mathcal{O}(10^{-3})~e$ can be achieved for masses of $mathcal{O}(1)$ GeV, and charge $mathcal{O}(10^{-2})~e$ for masses of $mathcal{O}(10)$ GeV, greatly extending the parameter space explored for particles with small charge and masses above 100 MeV.
In the RADAR project described in this Letter of Intent, we propose to deploy a 6 kton liquid argon TPC at the NOvA Far Detector building in Ash River, Minnesota, and expose it to the NuMI beam during NOvA running. It will significantly add to the physics capabilities of the NOvA program while providing LBNE with an R&D program based on full-scale TPC module assemblies. RADAR offers an excellent opportunity to improve the full Homestake LBNE project in physics reach, timeline, costs, and fostering international partnership. The anticipated duration of the projects construction is 5 years, with running happening between 2018 and 2023.