Do you want to publish a course? Click here

Letter of Intent to Construct a nuPRISM Detector in the J-PARC Neutrino Beamline

127   0   0.0 ( 0 )
 Added by Michael Wilking
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

As long-baseline neutrino experiments enter the precision era, the difficulties associated with understanding neutrino interaction cross sections on atomic nuclei are expected to limit experimental sensitivities to oscillation parameters. In particular, the ability to relate experimental observables to neutrino energy in previous experiments has relied solely on theoretical models of neutrino-nucleus interactions, which currently suffer from very large theoretical uncertainties. By observing charged current $ u_mu$ interactions over a continuous range of off-axis angles from 1 to 4 degrees, the nuPRISM water Cherenkov detector can provide a direct measurement of the far detector lepton kinematics for any given set of oscillation parameters, which largely removes neutrino interaction modeling uncertainties from T2K oscillation measurements. This naturally provides a direct constraint on the relationship between lepton kinematics and neutrino energy. In addition, nuPRISM is a sensitive probe of sterile neutrino oscillations with multiple energy spectra, which provides unique constraints on possible background-related explanations of the MiniBooNE anomaly. Finally, high-precision measurements of neutrino cross sections on water are possible, including $ u_e$ measurements and the first ever measurements of neutral current interactions as a function of neutrino energy. The nuPRISM detector also benefits the proposed Hyper-Kamiokande project. A demonstration that neutrino interaction uncertainties can be controlled will be important to understanding the physics reach of Hyper-K. In addition, nuPRISM will provide an easily accessible prototype detector for many of the new hardware components currently under consideration for Hyper-K. The following document presents the configuration, physics impact, and preliminary cost estimates for a nuPRISM detector in the J-PARC neutrino beamline.



rate research

Read More

387 - Suyong Choi 2020
We propose a new experiment sensitive to the detection of millicharged particles produced at the $30$ GeV proton fixed-target collisions at J-PARC. The potential site for the experiment is B2 of the Neutrino Monitor building, $280$ m away from the target. With $textrm{N}_textrm{POT}=10^{22}$, the experiment can provide sensitivity to particles with electric charge $3times10^{-4},e$ for mass less than $0.2$ $textrm{GeV}/textrm{c}^2$ and $1.5times10^{-3},e$ for mass less than $1.6$ $textrm{GeV}/textrm{c}^2$. This brings a substantial extension to the current constraints on the charge and the mass of such particles.
101 - K. Abe , H. Aihara , A. Ajmi 2019
In this document, technical details of the upgrade plan of the J-PARC neutrino beamline for the extension of the T2K experiment are described. T2K has proposed to accumulate data corresponding to $2times{}10^{22}$ protons-on-target in the next decade, aiming at an initial observation of CP violation with $3sigma$ or higher significance in the case of maximal CP violation. Methods to increase the neutrino beam intensity, which are necessary to achieve the proposed data increase, are described.
In this LOI we propose a dedicated experiment that would detect milli-charged particles produced by pp collisions at LHC Point 5. The experiment would be installed during LS2 in the vestigial drainage gallery above UXC and would not interfere with CMS operations. With 300 fb$^{-1}$ of integrated luminosity, sensitivity to a particle with charge $mathcal{O}(10^{-3})~e$ can be achieved for masses of $mathcal{O}(1)$ GeV, and charge $mathcal{O}(10^{-2})~e$ for masses of $mathcal{O}(10)$ GeV, greatly extending the parameter space explored for particles with small charge and masses above 100 MeV.
Neutron tagging in Gadolinium-doped water may play a significant role in reducing backgrounds from atmospheric neutrinos in next generation proton-decay searches using megaton-scale Water Cherenkov detectors. Similar techniques might also be useful in the detection of supernova neutrinos. Accurate determination of neutron tagging efficiencies will require a detailed understanding of the number of neutrons produced by neutrino interactions in water as a function of momentum transferred. We propose the Atmospheric Neutrino Neutron Interaction Experiment (ANNIE), designed to measure the neutron yield of atmospheric neutrino interactions in gadolinium-doped water. An innovative aspect of the ANNIE design is the use of precision timing to localize interaction vertices in the small fiducial volume of the detector. We propose to achieve this by using early production of LAPPDs (Large Area Picosecond Photodetectors). This experiment will be a first application of these devices demonstrating their feasibility for Water Cherenkov neutrino detectors.
203 - M.Harada , S.Hasegawa , Y.Kasugai 2015
On April 2015, the J-PARC E56 (JSNS2: J-PARC Sterile Neutrino Search using neutrinos from J-PARC Spallation Neutron Source) experiment officially obtained stage-1 approval from J-PARC. We have since started to perform liquid scintillator R&D for improving energy resolution and fast neutron rejection. Also, we are studying Avalanche Photo-Diodes (SiPM) inside the liquid scintillator. In addition to the R&D work, a background measurement for the proton beam bunch timing using a small liquid scintillator volume was planned, and the safety discussions for the measurement have been done. This report describes the status of the R&D work and the background measurements, in addition to the milestones required before stage-2 approval.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا