Do you want to publish a course? Click here

Localization and Recurrence of Quantum Walk in Periodic Potential on a Line

112   0   0.0 ( 0 )
 Added by Choon-Lin Ho
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present numerical study of a model of quantum walk in periodic potential on the line. We take the simple view that different potentials affect differently the way the coin state of the walker is changed. For simplicity and definiteness, we assume the walkers coin state is unaffected at sites without potential, and is rotated in an unbiased way according to Hadamard matrix at sites with potential. This is the simplest and most natural model of a quantum walk in a periodic potential with two coins. Six generic cases of such quantum walks were studied numerically. It is found that of the six cases, four cases display significant localization effect, where the walker is confined in the neighborhood of the origin for sufficiently long times. Associated with such localization effect is the recurrence of the probability of the walker returning to the neighborhood of the origin.



rate research

Read More

55 - C.-L. Ho 2016
Two subjects are discussed in this work: localisation and recurrence in a model of quantum walk in a periodic potential, and a model of opinion dynamics with multiple choices of opinions.
We study the decoherence effects originating from state flipping and depolarization for two-dimensional discrete-time quantum walks using four-state and two-state particles. By quantifying the quantum correlations between the particle and position degree of freedom and between the two spatial ($x-y$) degrees of freedom using measurement induced disturbance (MID), we show that the two schemes using a two-state particle are more robust against decoherence than the Grover walk, which uses a four-state particle. We also show that the symmetries which hold for two-state quantum walks breakdown for the Grover walk, adding to the various other advantages of using two-state particles over four-state particles.
We consider the Dirac equation on periodic networks (quantum graphs). The self-adjoint quasi periodic boundary conditions are derived. The secular equation allowing us to find the energy spectrum of the Dirac particles on periodic quantum graphs is obtained. Band spectra of the periodic quantum graphs of different topologies are calculated. Universality of the probability to be in the spectrum for certain graph topologies is observed.
172 - Miquel Montero 2013
In this paper we present closed-form expressions for the wave function that governs the evolution of the discrete-time quantum walk on a line when the coin operator is arbitrary. The formulas were derived assuming that the walker can either remain put in the place or proceed in a fixed direction but never move backward, although they can be easily modified to describe the case in which the particle can travel in both directions. We use these expressions to explore the properties of magnitudes associated to the process, as the probability mass function or the probability current, even though we also consider the asymptotic behavior of the exact solution. Within this approximation, we will estimate upper and lower bounds, consider the origins of an emerging approximate symmetry, and deduce the general form of the stationary probability density of the relative location of the walker.
We present a scheme to describe the dynamics of accelerating discrete-time quantum walk for one- and two-particle in position space. We show the effect of acceleration in enhancing the entanglement between the particle and position space in one-particle quantum walk and in generation of entanglement between the two unentangled particle in two-particle quantum walk. By introducing the disorder in the form of phase operator we study the transition from localization to delocalization as a function of acceleration. These inter-winding connection between acceleration, entanglement generation and localization along with well established connection of quantum walks with Dirac equation can be used to probe further in the direction of understanding the connection between acceleration, mass and entanglement in relativistic quantum mechanics and quantum field theory. Expansion of operational tools for quantum simulations and for modelling quantum dynamics of accelerated particle using quantum walks is an other direction where these results can play an important role.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا