Do you want to publish a course? Click here

Decoherence on a two-dimensional quantum walk using four- and two-state particle

245   0   0.0 ( 0 )
 Added by C. M. Chandrashekar
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study the decoherence effects originating from state flipping and depolarization for two-dimensional discrete-time quantum walks using four-state and two-state particles. By quantifying the quantum correlations between the particle and position degree of freedom and between the two spatial ($x-y$) degrees of freedom using measurement induced disturbance (MID), we show that the two schemes using a two-state particle are more robust against decoherence than the Grover walk, which uses a four-state particle. We also show that the symmetries which hold for two-state quantum walks breakdown for the Grover walk, adding to the various other advantages of using two-state particles over four-state particles.



rate research

Read More

Multi-dimensional quantum walks can exhibit highly non-trivial topological structure, providing a powerful tool for simulating quantum information and transport systems. We present a flexible implementation of a 2D optical quantum walk on a lattice, demonstrating a scalable quantum walk on a non-trivial graph structure. We realized a coherent quantum walk over 12 steps and 169 positions using an optical fiber network. With our broad spectrum of quantum coins we were able to simulate the creation of entanglement in bipartite systems with conditioned interactions. Introducing dynamic control allowed for the investigation of effects such as strong non-linearities or two-particle scattering. Our results illustrate the potential of quantum walks as a route for simulating and understanding complex quantum systems.
We present a scheme to describe the dynamics of accelerating discrete-time quantum walk for one- and two-particle in position space. We show the effect of acceleration in enhancing the entanglement between the particle and position space in one-particle quantum walk and in generation of entanglement between the two unentangled particle in two-particle quantum walk. By introducing the disorder in the form of phase operator we study the transition from localization to delocalization as a function of acceleration. These inter-winding connection between acceleration, entanglement generation and localization along with well established connection of quantum walks with Dirac equation can be used to probe further in the direction of understanding the connection between acceleration, mass and entanglement in relativistic quantum mechanics and quantum field theory. Expansion of operational tools for quantum simulations and for modelling quantum dynamics of accelerated particle using quantum walks is an other direction where these results can play an important role.
Quantum walks in an elaborately designed graph, is a powerful tool simulating physical and topological phenomena, constructing analog quantum algorithms and realizing universal quantum computing. Integrated photonics technology has emerged as a versatile platform to implement various quantum information tasks and a promising candidate to perform large-scale quantum walks. Both extending physical dimensions and involving more particles will increase the complexity of the evolving systems and the desired quantum resources. Pioneer works have demonstrated single particle walking on two-dimensional (2D) lattices and multiple walkers interfering on a one-dimensional structure. However, 2D multi-particle quantum walk, genuinely being not classically simulatable, has been a vacancy for nearly ten years. Here, we present a genuine 2D quantum walk with correlated photons on a triangular photonic lattice, which can be mapped to a state space up to 37X37 dimensions. This breaks through the physically restriction of single-particle evolution, which can encode information in a large space and constitute high-dimensional graphs indeed beneficial to quantum information processing. A site-by-site addressing between the chip facet and the 2D fanout interface enables an observation of over 600 non-classical interferences simultaneously, violating a classical limit up to 57 standard deviations. Our platform offers a promising prospect for multi-photon quantum walks in a large-scale 2D arrangement, paving the way for practical quantum simulation and quantum computation beyond classical regime.
We present an investigation of many-particle quantum walks in systems of non-interacting distinguishable particles. Along with a redistribution of the many-particle density profile we show that the collective evolution of the many-particle system resembles the single-particle quantum walk evolution when the number of steps is greater than the number of particles in the system. For non-uniform initial states we show that the quantum walks can be effectively used to separate the basis states of the particle in position space and grouping like state together. We also discuss a two-particle quantum walk on a two- dimensional lattice and demonstrate an evolution leading to the localization of both particles at the center of the lattice. Finally we discuss the outcome of a quantum walk of two indistinguishable particles interacting at some point during the evolution.
154 - Eugenio Roldan , , J.C. Soriano 2005
We propose an optical cavity implementation of the two-dimensional coined quantum walk on the line. The implementation makes use of only classical resources, and is tunable in the sense that a large number of different unitary transformations can be implemented by tuning some parameters of the device.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا