Do you want to publish a course? Click here

Quantum walk with a general coin: Exact solution and asymptotic properties

189   0   0.0 ( 0 )
 Added by Miquel Montero
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

In this paper we present closed-form expressions for the wave function that governs the evolution of the discrete-time quantum walk on a line when the coin operator is arbitrary. The formulas were derived assuming that the walker can either remain put in the place or proceed in a fixed direction but never move backward, although they can be easily modified to describe the case in which the particle can travel in both directions. We use these expressions to explore the properties of magnitudes associated to the process, as the probability mass function or the probability current, even though we also consider the asymptotic behavior of the exact solution. Within this approximation, we will estimate upper and lower bounds, consider the origins of an emerging approximate symmetry, and deduce the general form of the stationary probability density of the relative location of the walker.



rate research

Read More

We introduce quantum walks with a time-dependent coin, and show how they include, as a particular case, the generalized quantum walk recently studied by Wojcik et al. {[}Phys. Rev. Lett. textbf{93}, 180601(2004){]} which exhibits interesting dynamical localization and quasiperiodic dynamics. Our proposal allows for a much easier implementation of this particular rich dynamics than the original one. Moreover, it allows for an additional control on the walk, which can be used to compensate for phases appearing due to external interactions. To illustrate its feasibility, we discuss an example using an optical cavity. We also derive an approximated solution in the continuous limit (long--wavelength approximation) which provides physical insight about the process.
Motivated by the challenge of seeking a rigorous foundation for the bulk-boundary correspondence for free fermions, we introduce an algorithm for determining exactly the spectrum and a generalized-eigenvector basis of a class of banded block quasi-Toeplitz matrices that we call corner-modified. Corner modifications of otherwise arbitrary banded block-Toeplitz matrices capture the effect of boundary conditions and the associated breakdown of translational invariance. Our algorithm leverages the interplay between a non-standard, projector-based method of kernel determination (physically, a bulk-boundary separation) and families of linear representations of the algebra of matrix Laurent polynomials. Thanks to the fact that these representations act on infinite-dimensional carrier spaces in which translation symmetry is restored, it becomes possible to determine the eigensystem of an auxiliary projected block-Laurent matrix. This results in an analytic eigenvector Ansatz, independent of the system size, which we prove is guaranteed to contain the full solution of the original finite-dimensional problem. The actual solution is then obtained by imposing compatibility with a boundary matrix, also independent of system size. As an application, we show analytically that eigenvectors of short-ranged fermionic tight-binding models may display power-law corrections to exponential decay, and demonstrate the phenomenon for the paradigmatic Majorana chain of Kitaev.
We report on the possibility of controlling quantum random walks with a step-dependent coin. The coin is characterized by a (single) rotation angle. Considering different rotation angles, one can find diverse probability distributions for this walk including: complete localization, Gaussian and asymmetric likes. In addition, we explore the entropy of walk in two contexts; for probability density distributions over position space and walkers internal degrees of freedom space (coin space). We show that entropy of position space can decrease for a step-dependent coin with the step-number, quite in contrast to a walk with step-independent coin. For entropy of coin space, a damped oscillation is found for walk with step-independent coin while for a step-dependent coin case, the behavior of entropy depends on rotation angle. In general, we demonstrate that quantum walks with simple initiatives may exhibit a quite complex and varying behavior if step-dependent coins are applied. This provides the possibility of controlling quantum random walk with a step-dependent coin.
We have recently proposed a two-dimensional quantum walk where the requirement of a higher dimensionality of the coin space is substituted with the alternance of the directions in which the walker can move [C. Di Franco, M. Mc Gettrick, and Th. Busch, Phys. Rev. Lett. {bf 106}, 080502 (2011)]. For a particular initial state of the coin, this walk is able to perfectly reproduce the spatial probability distribution of the non-localized case of the Grover walk. Here, we present a more detailed proof of this equivalence. We also extend the analysis to other initial states, in order to provide a more complete picture of our walk. We show that this scheme outperforms the Grover walk in the generation of $x$-$y$ spatial entanglement for any initial condition, with the maximum entanglement obtained in the case of the particular aforementioned state. Finally, the equivalence is generalized to wider classes of quantum walks and a limit theorem for the alternate walk in this context is presented.
We study the asymptotic position distribution of general quantum walks on a lattice, including walks with a random coin, which is chosen from step to step by a general Markov chain. In the unitary (i.e., non-random) case, we allow any unitary operator, which commutes with translations, and couples only sites at a finite distance from each other. For example, a single step of the walk could be composed of any finite succession of different shift and coin operations in the usual sense, with any lattice dimension and coin dimension. We find ballistic scaling, and establish a direct method for computing the asymptotic distribution of position divided by time, namely as the distribution of the discrete time analog of the group velocity. In the random case, we let a Markov chain (control process) pick in each step one of finitely many unitary walks, in the sense described above. In ballistic order we find a non-random drift, which depends only on the mean of the control process and not on the initial state. In diffusive scaling the limiting distribution is asymptotically Gaussian, with a covariance matrix (diffusion matrix) depending on momentum. The diffusion matrix depends not only on the mean but also on the transition rates of the control process. In the non-random limit, i.e., when the coins chosen are all very close, or the transition rates of the control process are small, leading to long intervals of ballistic evolution, the diffusion matrix diverges. Our method is based on spatial Fourier transforms, and the first and second order perturbation theory of the eigenvalue 1 of the transition operator for each value of the momentum.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا